GAUGE MEDIATION MASS PATTERN REVIEW

Alberto Mariotti

9 March, 2010 Rencontres de Moriond

OUTLINE Supersymmetry and the MSSM Mediation of supersymmetry breaking Minimal Gauge Mediation Semi Direct Gauge Mediation Conclusions

Gauge mediation

$\mathcal{N} = 1$ Supersymmetry

SUPERSYMMETRY

Symmetry which maps bosons in fermions and viceversa

 $Q \mid boson >= \mid fermion > \qquad Q \mid fermion >= \mid boson >$

$$\begin{split} \{Q_{\alpha}, Q_{\dot{\alpha}}^{\dagger}\} &= 2\sigma_{\alpha\dot{\alpha}}^{\mu}P_{\mu} \\ \{Q_{\alpha}, Q_{\beta}\} &= \{Q_{\dot{\alpha}}^{\dagger}, Q_{\dot{\beta}}^{\dagger}\} = 0 \\ [P^{\mu}, Q_{\alpha}] &= [P^{\mu}, Q_{\dot{\alpha}}^{\dagger}] = 0 \end{split}$$

- Irreducible representations of supersymmetry algebra are supermultiplets
- Supermultiplets contains bosons and fermions
- Superpartners have the same mass and quantum numbers
- Chiral superfields

$$\Phi = (\phi, \psi)$$

Vector superfields

$$V_{Sfield} = (\lambda, A_{\mu})$$

MSSM

• Matter and vector fields become supersymmetric

Matter \Rightarrow Chiral superfields (ϕ, ψ)

```
Vector \Rightarrow Vector superfields (\lambda, A^{\mu})
```

• Two Higgs chiral superfields

$$h \Rightarrow H_1, H_2$$

- Special ultraviolet finiteness properties (no quadratic divergencies)
- Address the hierarchy problem $M_{\text{planck}} \gg M_{\text{weak}}$
- Better GUT unification
- Included in unification theories
 - Local supersymmetry includes gravity (Supergravity)
 - Superstring theory

SUPERSYMMETRY BREAKING

• Supersymmetry not realized at low energies

SUSY MUST BE BROKEN!!

• Soft susy breaking \equiv No quadratic divergencies

SUPERSYMMETRY MUST BE BROKEN SOFTLY

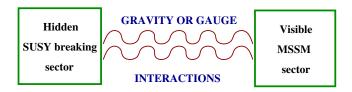
 $\mathcal{L} = \mathcal{L}_{MSSM} + \mathcal{L}_{soft}$

• \mathcal{L}_{soft} = Soft terms

$$m_{susy}\lambda_{lpha}\lambda^{lpha}$$
 Gaugino mass
 $m_{susy}^2\phi^{\dagger}\phi$ Scalar mass
 $A\phi^3$ A - term

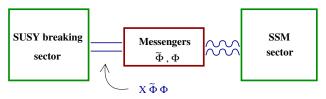
- Susy breaking scale *m*_{susy}
- Superpartners get masses of order msusy

÷


ASPECTS OF MSSM AND SOFT TERMS

Z₂ Symmetry: R-parity

- Forbids lepton and baryon violating terms
- LSP stable ⇒ Dark matter candidate
- 105 free parameters
- Flavour problem
- CP problem
- μ problem \Rightarrow NMSSM


??? Scheme to predict structure of soft terms ???

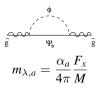
MEDIATION OF SUPERSYMMETRY BREAKING

- Gravity Mediation
 - Effective Lagrangian description, Plank suppressed operators
 - Problem: Flavour violation, it leads to FCNC
- Gauge Mediation
 - No gravity
 - No Flavour Problem
 - Predictive for the soft terms
 - Problem: Landau Pole, μ , $B\mu$...
 - Low energy supersymmetry breaking
 - ► ⇒ Dynamical Supersymmetry Breaking (strong dynamics in the hidden sector)

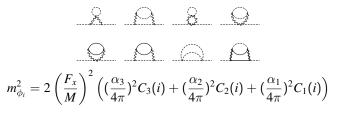
MINIMAL GAUGE MEDIATION

- Supersymmetry breaking parametrized as $\langle X \rangle = M + \theta^2 F_x$
- $\sqrt{F_x}$ susy breaking scale
- Introduce Messengers Φ and $\tilde{\Phi}$ in 5 and $\bar{5}$ of SU(5) with

$$\Delta \mathcal{L}_{mess} = \int d^2 \theta \, X \, \Phi \tilde{\Phi} \qquad < X >= M + \theta^2 F_x$$


• Messengers mass matrix: split masses $m_{\pm}^2 = M^2 \pm |F_x|$, $M^2 \gg |F_x|$

$$\mathcal{L} \supset \; (\phi \quad ilde{\phi}^{*}) \; \left(egin{array}{cc} M^2 & F_x \ F_x^{*} & M^2 \end{array}
ight) \left(egin{array}{cc} \phi^{*} \ ilde{\phi} \end{array}
ight)$$


• Susy breaking transmitted through loops of gauge and messengers fields

SOFT MASSES IN MINIMAL GAUGE MEDIATION

- · Loops generate soft susy breaking terms in the visible sector
- One loop gaugino masses

Two loops scalar masses

PROPERTIES OF GAUGE MEDIATION

MODEL INDEPENDENT FEATURES

- Quite predictive in the mass spectrum
- No flavour problem
- Sum rules for scalar soft masses: $TrYm^2 = 0$, $Tr(B L)m^2 = 0$

MOST MODELS OF GMSB

- Gaugino mass unification: $\frac{m_{\lambda,1}}{\alpha_1} = \frac{m_{\lambda,2}}{\alpha_2} = \frac{m_{\lambda,3}}{\alpha_3}$
- Strongly int. sparticles heavier than weakly int.
- LSP: Gravitino

Some delicate issues

- μ and μ/B_{μ} problem
- Global $U(1)_R$ symmetry forbids gaugino mass term $m\lambda_{\alpha}\lambda^{\alpha}$ since $R[\lambda] = 1$
- Landau pole before GUT scale in models with many messengers
- Explain Hierarchy between susy br. scale and Planck scale (DSB)

SEMI DIRECT GAUGE MEDIATION

- Further assumption: Additional weakly coupled gauge group G_m
- Messengers couple to the susy br. sector only through G_m

$$\Phi_{a,i}$$
 , $ilde{\Phi}_{j,b}$ $a,b\in G_m$ $i,j\in G_{MSSM}$

- Messengers do not partecipate to the susy breaking
- Tree level mass term for the messengers

$$W_{mess} = m_{mess} \Phi \tilde{\Phi}$$

• No Landau Pole problem (G_m can be a U(1))

GENERAL SEMI DIRECT GM

- Soft terms via loops of G_m, messengers and G_{MSSM}
- Perturbative computations in g_m and g_{SM}
- Gaugino masses expected at three loops
- Scalar masses at four loops
- Higher Susy breaking scale

MODEL INDEPENDENT ANALYSIS

- Gaugino mass screening
 - Three loop contribution sum to zero!!!
 - First non vanishing contribution at 5 loops
- Sfermion mass described in terms of two functions
 - One function $C(p^2/M^2)$ encodes hidden sector dynamics
 - Other function $K(p^2/m^2)$ encodes semi direct gauge mediation scheme
 - D term breaking in the hidden sector does not contribute

CONCLUSIONS

GAUGE MEDIATED THEORIES

- Promising for low energy supersymmetry breaking
- Address susy flavour problem
- Predictive soft mass spectrum

Martin: hep-ph/9709356; Giudice, Rattazzi: hep-ph/9801271

ISSUES FOR MODEL BUILDERS

- Model independent analysis
- Landau pole problem
- Dynamical Supersymmetry Breaking and U(1)_R symmetry breaking
- Dark matter candidate
- μ and $B\mu$ problem

μ problem

μ problem

• Need μ term in Higgs superpotential

 $W = \mu H_1 H_2$

- μ naturally of order UV scale $\mu \sim O(\Lambda_{UV})$
- We would like μ is of order EW scale
- \Rightarrow We generate it with susy breaking $\mu \sim O(\Lambda_{SUSYbr})$

B_{μ} problem

B_{μ} problem

• We need μ both B_{μ} of the EW order in the scalar potential

$$V = \mu^2 (h_1 h_1^{\dagger} + h_2 h_2^{\dagger}) + B_{\mu} (h_1 h_2 + \text{h.c.})$$

 $\bullet\,$ Toy model: couple Higgs to susy breaking directly, small $\lambda\ll 1$

$$W = \lambda X H_1 H_2 \qquad \qquad < X >= x + \theta^2 F_x$$

• μ and B_{μ} terms are generated

$$\mu = \lambda x \qquad B_{\mu} = \lambda F_{x}$$

$$\Rightarrow \frac{B_{\mu}}{\mu} = \frac{F_{x}}{x} \sim 10 - 100 Tev \qquad (1)$$
TOO LARGE
mediation scenario

• (??) usual in gauge

R SYMMETRY AND LANDAU POLE

R symmetry problem

 $R[\lambda] = 1$

• Gaugino mass violates *R* symmetry (even discrete one)

$$\mathcal{L}_{gauginoM} = m_s \lambda_{lpha} \lambda^{lpha}$$

• Cannot be generated radiatively if *R* symmetry is preserved in susy breaking vacuum

LANDAU POLE PROBLEM

- In gauge mediation typically we add matter charged under gauge group of MSSM
- We have to control RG flow and preserve GUT
- Landau poles can arise before GUT scale

DYNAMICAL SUPERSYMMETRY BREAKING

DYNAMICAL SUPERSYMMETRY BREAKING

- Gauge group *G* in hidden sector drive susy breaking with strong dynamics effects (typically non perturbative ones)
- Lead to hierarchy between Λ_{SUSYbr} and Λ_{UV}

$$E_{vacuum} = \Lambda_{SUSYbr} = \Lambda_{UV} \ e^{-\frac{8\pi^2}{g^2(\Lambda_{UV})}}$$

Hidden sector is typically strongly coupled