Lepton Universality Test
with $K^+ \rightarrow l^+ \nu$ Decays at CERN NA62

Evgueni Goudzovski
(University of Birmingham)

for the NA62 collaboration
(Bem ITP, Birmingham, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati,
IHEP Protvino, INR Moscow, Louvain, Mainz, Merced, Naples, Perugia, Pisa,
Rome I, Rome II, Saclay, San Luis Potosí, SLAC, Sofia, TRIUMF, Turin)

Outline:
1) Motivation & experimental status;
2) Beam, detector and data taking;
3) Backgrounds & systematic effects;
4) Preliminary results and prospects.

Rencontres de Moriond (EW session)
La Thuile, Italy • 10 March 2010
Leptonic meson decays: $P^+ \rightarrow l^+ \nu$

SM contribution is helicity suppressed:

$$\Gamma(P^+ \rightarrow l^+ \nu) = \frac{G_F^2 M_P M_l^2}{8\pi} \left(1 - \frac{M_l^2}{M_P^2}\right)^2 f_P^2 |V_{qq}|^2$$

Sizeable tree level charged Higgs (H^\pm) contributions in models with two Higgs doublets (2HDM including SUSY)

(numerical examples for $M_H=500\text{GeV}/c^2$, $\tan\beta = 40$)

- $\pi^+ \rightarrow l\nu$: $\Delta\Gamma/\Gamma_{SM} \approx -2(m_{\pi}/m_H)^2 m_d/(m_u+m_d) \tan^2\beta \approx 2 \times 10^{-4}$
- $K^+ \rightarrow l\nu$: $\Delta\Gamma/\Gamma_{SM} \approx -2(m_K/m_H)^2 \tan^2\beta \approx 0.3\%$
- $D_{s}^+ \rightarrow l\nu$: $\Delta\Gamma/\Gamma_{SM} \approx -2(m_{D}/m_H)^2 (m_s/m_c) \tan^2\beta \approx 0.4\%$
- $B^+ \rightarrow l\nu$: $\Delta\Gamma/\Gamma_{SM} \approx -2(m_{B}/m_H)^2 \tan^2\beta \approx 30\%$

BaBar, Belle: $\text{Br}_{\text{exp}}(B \rightarrow \tau\nu) = (1.42 \pm 0.43) \times 10^{-4}$

Standard Model: $\text{Br}_{\text{SM}}(B \rightarrow \tau\nu) = (1.33 \pm 0.23) \times 10^{-4}$

(SM uncertainties: $\delta f_B/f_B=10\%$, $\delta |V_{ub}|^2/|V_{ub}|^2=13\%$)

$\Delta\Gamma/\Gamma_{SM} = 1.07 \pm 0.37$

(4σ discrepancy + new data: PRD79 (2009) 052001)

$R = \text{Br}(K \rightarrow \mu\nu)/\text{Br}(K_{e3})$:

$\delta R/R_{\text{exp}} = 1.0\%$, challenging by not hopeless

$\text{PRL100 (2008) 241802}$

$f_{D_s}(QCD) = (241 \pm 3)\text{MeV}$

$f_{D_s}(\text{exp}) = (277 \pm 9)\text{MeV}$

Obstructed by hadronic uncertainties
$R_K = \frac{K_{e2}}{K_{\mu2}}$ in the SM

Observable sensitive to lepton flavour violation and its SM expectation:

$$R_K = \frac{\Gamma(K^+ \rightarrow e^+\nu)}{\Gamma(K^+ \rightarrow \mu^+\nu)} = \frac{m_e^2}{m_\mu^2} \cdot \left(\frac{m_K^2 - m_e^2}{m_K^2 - m_\mu^2}\right)^2 \cdot (1 + \delta R_K^{\text{rad.corr.}})$$

(similarly, R_π in the pion sector)

Helicity suppression: $f \sim 10^{-5}$

- **SM prediction**: excellent sub-permille accuracy due to cancellation of hadronic uncertainties.

- Measurements of R_K and R_π have long been considered as tests of lepton universality.

- **Recently understood**: helicity suppression of R_K might enhance sensitivity to non-SM effects to an experimentally accessible level.

$R_K^{\text{SM}} = (2.477 \pm 0.001) \times 10^{-5}$

$R_\pi^{\text{SM}} = (12.352 \pm 0.001) \times 10^{-5}$

Phys. Lett. 99 (2007) 231801
\[R_K = \frac{K_{e2}}{K_{\mu2}} \text{ beyond the SM} \]

2HDM - tree level
(including SUSY)
\(K_{l2} \) can proceed via exchange of charged Higgs \(H^\pm \) instead of \(W^\pm \)
\(\rightarrow \) Does not affect the ratio \(R_K \)

2HDM - one-loop level
Dominant contribution to \(\Delta R_K \): \(H^\pm \) mediated
LFV (rather than LFC) with emission of \(\nu_\tau \)
\(\rightarrow \) \(R_K \) enhancement can be experimentally accessible

\[
R_K^{\text{LFV}} \approx R_K^{\text{SM}} \left[1 + \left(\frac{m_k^4}{M_{H^\pm}^4} \right) \left(\frac{m_\tau^2}{M_e^2} \right) |\Delta_{13}|^2 \tan^6 \beta \right]
\]

Up to \(\sim 1\% \) effect in large (but not extreme) \(\tan \beta \) regime with a massive \(H^\pm \)

Example:
\(\Delta_{13} = 5 \times 10^{-4}, \ \tan \beta = 40, \ M_H = 500 \text{ GeV/c}^2 \)
lead to \(R_K^{\text{MSSM}} = R_K^{\text{SM}}(1 + 0.013) \).
RK & Rπ: experimental status

Kaon experiments:
- PDG’08 average (1970s measurements):
 \[R_K = (2.45 \pm 0.11) \times 10^{-5} \quad (\delta R_K/R_K = 4.5\%) \]
- Recent improvement: KLOE (Frascati).
 Data collected in 2001–2005,
 13.8K Ke2 candidates, 16% background.
 \[R_K = (2.493 \pm 0.031) \times 10^{-5} \quad (\delta R_K/R_K = 1.3\%) \]
 (EPJ C64 (2009) 627)
- NA62 (phase I) goal:
 dedicated data taking strategy,
 ~150K Ke2 candidates, <10% background,
 \(\delta R_K/R_K < 0.5\% \): a stringent SM test.

Pion experiments:
- PDG’08 average (1980s, 90s measurements):
 \[R_\pi = (12.30 \pm 0.04) \times 10^{-5} \quad (\delta R_\pi/R_\pi = 0.3\%) \]
- Current projects: PEN@PSI (stopped \(\pi \)) running (arXiv:0909.4358)
 PIENU@TRIUMF (in-flight) proposed (T. Numao, PANIC’08 proceedings, p.874)
 \(\delta R_\pi/R_\pi \sim 0.05\% \) foreseen (similar to SM precision)
NA48/NA62: discovery of direct CPV

1997: ε'/ε: K_L+K_S
1998: K_L+K_S
1999: K_L+K_S K_S HI
2000: K_L only K_S HI
2001: K_L+K_S K_S HI
2002: K_S/hyperons
2003: K^+/K^-
2004: K^+/K^-
2007: $K^\pm_e/K^\pm\mu_2$ tests
2008: $K^\pm_{e_2}/K^\pm_{\mu_2}$ tests
2007–2012: design & construction
2013–2015: $K^+\to\pi^+\nu\bar{\nu}$ data taking

NA62 (phase II): $K^\pm_{e_2}/K^\pm_{\mu_2}$ tests
Data taking:

- Four months in 2007 (23/06–22/10):
 ~400K SPS spills, 300TB of raw data (90TB recorded); reprocessing & data preparation finished.
- Two weeks in 2008 (11/09–24/09):
 special data sets allowing reduction of the systematic uncertainties.

Principal subdetectors for R_K:

- Magnetic spectrometer (4 DCHs):
 4 views/DCH: redundancy \Rightarrow efficiency; $\Delta p/p = 0.47\% + 0.020\%p$ [GeV/c]
- Hodoscope
 fast trigger, precise t measurement (150ps).
- Liquid Krypton EM calorimeter (LKr)
 High granularity, quasi-homogeneous;
 $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV];
 $\sigma_x = \sigma_y = 0.42/E^{1/2} + 0.6mm$ (1.5mm@10GeV).
Trigger logic

Minimum bias
(high efficiency, but low purity)
trigger configuration used

\(K_{e2} \) condition: \(Q_1 \times E_{LKr} \times 1TRK \).
Purity \(\sim 10^{-5} \).

\(K_{\mu2} \) condition: \(Q_1 \times 1TRK/D \),
downscaling (D) 50 to 150.
Purity \(\sim 2\% \).

- Efficiency of \(K_{e2} \) trigger: monitored with \(K_{\mu2} \) & other control triggers.
- \(E_{LKr} \) inefficiency for electrons measured to be \((0.05 \pm 0.01)\%\) for \(p_{\text{track}} > 15 \) GeV/c.
- Different trigger conditions for signal and normalization!
Measurement strategy

(1) $K_{e2}/K_{\mu2}$ candidates are collected **simultaneously**:
- the result does not rely on kaon flux measurement;
- several systematic effects cancel at first order
 (e.g. reconstruction/trigger efficiencies, time-dependent effects).

(2) counting experiment, independently in **10 lepton momentum bins**
(owing to strong momentum dependence of backgrounds and event topology)

\[R_K = \frac{N(K_{e2}) - N_B(K_{e2})}{N(K_{\mu2}) - N_B(K_{\mu2})} \cdot \frac{A(K_{\mu2}) \times f_{\mu} \times \varepsilon(K_{\mu2})}{A(K_{e2}) \times f_e \times \varepsilon(K_{e2})} \cdot \frac{1}{f_{LKr}} \]

- $N(K_{e2})$, $N(K_{\mu2})$: numbers of selected K_{l2} candidates;
- $N_B(K_{e2})$, $N_B(K_{\mu2})$: numbers of background events;
- $A(K_{e2})$, $A(K_{\mu2})$: MC geometric acceptances (no ID);
- f_e, f_{μ}: directly measured particle ID efficiencies;
- $\varepsilon(K_{e2})/\varepsilon(K_{\mu2}) > 99.9\%$: E_{LKr} trigger condition efficiency;
- $f_{LKr} = 0.9980(3)$: global LKr readout efficiency.

(3) **MC simulations** used to a limited extent only:
- Geometrical part of the acceptance correction (not for particle ID);
- simulation of “catastrophic” bremsstrahlung by muons.
Large common part (topological similarity)
- one reconstructed track;
- geometrical acceptance cuts;
- K decay vertex: closest approach of track & nominal kaon axis;
- veto extra LKr energy deposition clusters;
- track momentum: $15\text{GeV/c}<p<65\text{GeV/c}$.

Kinematic separation

$\text{missing mass } M_{miss}^2 = (P_K - P_l)^2$

P_K: average measured with $K_{3\pi}$ decays

\rightarrow Sufficient $K_{e2}/K_{\mu2}$ separation at $p_{\text{track}}<25\text{GeV/c}$

Separation by particle ID

$E/p = (\text{LKr energy deposit/track momentum})$.

$0.95<E/p<1.10$ for electrons,
$E/p<0.85$ for muons.

\rightarrow Powerful μ^\pm suppression in e^\pm sample: $f\sim10^6$
Main background source
Muon “catastrophic” energy loss in LKr by emission of energetic bremsstrahlung photons.
\(P(\mu \rightarrow e) \sim 3 \times 10^{-6} \) (and momentum-dependent).

\[
P(\mu \rightarrow e)/R_K \sim 10\%:
\]
\(K_{\mu 2} \) decays represent a major background

Theoretical bremsstrahlung cross-section
must be validated in the region \((E_\gamma/E_\mu) > 0.9 \)
by a direct measurement of \(P(\mu \rightarrow e) \)
to \(\sim 10^{-2} \) relative precision.

Obtaining pure muon samples
Electron contamination due to \(\mu \rightarrow e \) decay: \(\sim 10^{-4} \).
Pb wall (~10\(X_0 \)) placed between the HOD planes:
tracks traversing the wall and having \(E/p > 0.95 \)
are sufficiently pure muon samples (electron contamination <10\(^{-7}\)).
K_{\mu2} background (2)

P(\mu \to e): measurement (2007 special muon run) vs Geant4-based simulation

Good data/MC agreement for the Pb wall installed

P(\mu \to e) is modified by the Pb wall via two competing mechanisms:

1) ionization losses in Pb (low p);
2) bremsstrahlung in Pb (high p).

\[\to \text{a significant MC correction} \]

Result: \[B/(S+B) = (6.28 \pm 0.17)\% \]

(uncertainty is due to the limited size of the data sample used to validate the cross-section model)

Improvements:
- Muons from regular K_{\mu2} decays from kaon runs with the Pb wall installed.
Only energetic forward electrons (passing M_{miss}, E/p, vertex CDA cuts) are selected as K_{e2} candidates: (high x, low $\cos\Theta$). They are naturally suppressed by the muon polarisation.

Important but not dominant background

For NA62 conditions (74 GeV/c beam, ~100 m decay volume), $N(K_{\mu2}, \mu\rightarrow e \text{ decay})/N(K_{e2}) \sim 10$

$K_{\mu2} (\mu\rightarrow e)$ naively seems a huge background.

Muons from $K_{\mu2}$ decay are fully polarized: Michel electron distribution

$$d^2\Gamma/dx d(\cos\Theta) \sim x^2[(3-2x) - \cos\Theta(1-2x)]$$

$$x = E_e/E_{\text{max}} \approx 2E_e/M_\mu,$$

Θ is the angle between p_e and the muon spin (all quantities are defined in muon rest frame).

Result: $B/(S+B) = (0.23\pm0.01)\%$
K^+ → e^+ νγ (SD) background

- Background by definition of R_{K^r}, no helicity suppression.
- Rate similar to that of K_{e2}, limited precision: $\text{BR} = (1.52 \pm 0.23) \times 10^{-5}$.

ChPT $O(p^6)$, form factor with measured kinematic dependence (EPJC64 627)

SD background contamination

$\frac{B}{S+B} = (1.02 \pm 0.15)\%$

(uncertainty due to PDG BR, will be improved using a recent KLOE measurement, EPJC64 627)

Only energetic electrons ($E_e^* > 230 \text{MeV}$) are compatible to K_{e2} kinematic ID and contribute to the background.

This region of phase space is accessible for direct BR and form-factor measurement (being above the $E_e^* = 227 \text{MeV}$ endpoint of the K_{e3} spectrum).

Ke2γ (SD) Dalitz plot distribution

- Ke2γ (SD) Dalitz plot distribution
- Only energetic electrons ($E_e^* > 230 \text{MeV}$) are compatible to K_{e2} kinematic ID and contribute to the background.
- This region of phase space is accessible for direct BR and form-factor measurement (being above the $E_e^* = 227 \text{MeV}$ endpoint of the K_{e3} spectrum).

SD background contamination

$\frac{B}{S+B} = (1.02 \pm 0.15)\%$

(uncertainty due to PDG BR, will be improved using a recent KLOE measurement, EPJC64 627)
Electrons produced by beam halo muons via $\mu \to e$ decay can be kinematically and geometrically compatible to genuine K_{e2} decays.

Background measurement:
- Halo background much higher for K_{e2}^- ($\sim 20\%$) than for K_{e2}^+ ($\sim 1\%$).
- Halo background in the $K_{\mu 2}$ sample is considerably lower.
- $\sim 90\%$ of the data sample is K^+ only, $\sim 10\%$ is K^- only.
- K^+ halo component is measured directly with the K^- sample and vice versa.

The background is measured to sub-permille precision, and strongly depends on decay vertex position and track momentum.

The selection criteria (esp. Z_{vertex}) are optimized to minimize the halo background.

$$B/(S+B) = (0.45 \pm 0.04)\%$$

Uncertainty is due to the limited size of the control sample.
K_{e2}: partial (40%) data set

51,089 $K^+\rightarrow e^+\nu$ candidates, 99.2% electron ID efficiency, $B/(S+B) = (8.0\pm0.2)\%$

cf. KLOE: 13.8K candidates (K^+ and K^-), ~90% electron ID efficiency, 16% background

NA62 estimated total K_{e2} sample: ~120K K^+ & ~15K K^- candidates.
Proposal (CERN-SPSC-2006-033): 150K candidates
Backgrounds: summary

Backgrounds

<table>
<thead>
<tr>
<th>Source</th>
<th>(\text{B/(S+B)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{\mu 2})</td>
<td>((6.28 \pm 0.17))%</td>
</tr>
<tr>
<td>(K_{\mu 2} (\mu \rightarrow e))</td>
<td>((0.23 \pm 0.01))%</td>
</tr>
<tr>
<td>(K_{e 2\gamma} (SD^+))</td>
<td>((1.02 \pm 0.15))%</td>
</tr>
<tr>
<td>Beam halo</td>
<td>((0.45 \pm 0.04))%</td>
</tr>
<tr>
<td>(K_{e3})</td>
<td>(0.03)%</td>
</tr>
<tr>
<td>(K_{2\pi})</td>
<td>(0.03)%</td>
</tr>
<tr>
<td>Total</td>
<td>((8.03 \pm 0.23))%</td>
</tr>
</tbody>
</table>

Record \(K_{e2}\) sample:
51,089 candidates with low background

\(\text{B/(S+B)} = (8.0 \pm 0.2)\)%

Lepton momentum bins are differently affected by backgrounds and thus the systematic uncertainties.

Statistics in lepton momentum bins

(selection criteria, e.g. \(Z_{\text{vertex}}\) and \(M_{\text{miss}}^2\), are optimised individually in each \(P_{\text{track}}\) bin)
The only significant background source is the beam halo.

15.56M candidates with low background $B/(S+B) = 0.25\%$

(K$_\mu$2 trigger was pre-scaled by D=150)
Preliminary result (40% data set)

\[R_K = (2.500 \pm 0.012_{\text{stat}} \pm 0.011_{\text{syst}}) \times 10^{-5} \]
\[= (2.500 \pm 0.016) \times 10^{-5} \]

Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>(\delta R_K \times 10^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.012</td>
</tr>
<tr>
<td>(K_{\mu2})</td>
<td>0.004</td>
</tr>
<tr>
<td>Beam halo</td>
<td>0.001</td>
</tr>
<tr>
<td>(K_{e2}\gamma) (SD(^+))</td>
<td>0.004</td>
</tr>
<tr>
<td>Electron ID</td>
<td>0.001</td>
</tr>
<tr>
<td>IB simulation</td>
<td>0.007</td>
</tr>
<tr>
<td>Acceptance</td>
<td>0.002</td>
</tr>
<tr>
<td>Trigger timing</td>
<td>0.007</td>
</tr>
<tr>
<td>Total</td>
<td>0.016</td>
</tr>
</tbody>
</table>

(0.64% precision)

The whole 2007 sample will allow statistical uncertainty \(\sim 0.3\% \), total uncertainty of 0.4–0.5%. 19
Comparison to world data

March 2009

<table>
<thead>
<tr>
<th>World average</th>
<th>$\delta R_K \times 10^5$</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2009</td>
<td>2.467 ± 0.024</td>
<td>0.97%</td>
</tr>
<tr>
<td>June 2009</td>
<td>2.498 ± 0.014</td>
<td>0.56%</td>
</tr>
</tbody>
</table>

(NA48/2 preliminary results excluded from the new average: they are superseded by NA62)
\(R_K\): sensitivity to new physics

\(R_K\) measurements are currently in agreement with the SM expectation at \(\sim 1.5\sigma\). Any significant enhancement with respect to the SM value would be an evidence of new physics.

For non-tiny values of the LFV slepton mixing \(\Delta_{13}\), sensitivity to \(H^\pm\) in \(R_K = K_{e2}/K_{\mu2}\) is better than in \(B \rightarrow \tau \nu\).

"Maybe NA62 will find the first evidence for a charged Higgs exchange?"
-- John Ellis (arXiv:0901.1120)
Conclusions & prospects

• Due to the helicity suppression of the K_{e2} decay, the measurement of R_K is well-suited for a stringent test of the Standard Model.

• NA62 data taking in 2007/08 was optimised for R_K measurement. The NA62 K_{e2} sample is ~ 10 times the world sample. Powerful $K_{e2}/K_{\mu 2}$ separation ($>99\%$ electron ID efficiency and $\sim 10^6$ muon suppression) leads to a low 8% background.

• Preliminary result based on $\sim 40\%$ of the NA62 K_{e2} sample: $R_K = (2.500 \pm 0.016) \times 10^{-5}$, reaching a record 0.7% accuracy and compatible to the SM prediction. A timely result, as direct searches for New Physics at the LHC are approaching.

• With the full NA62 data sample of 2007/08, the precision is expected to be improved to better than $\delta R_K/R_K = 0.5\%$.

• R_K measurement with $\sim 0.1\%$ precision has been proposed in the framework of the NA62 (phase II) experiment.