

Measurements of the Unitarity Triangle Sides

|Vub| and |Vcb| from Semileptonic B decays

Phillip Urquijo Syracuse University (for the Belle Collaboration)

Introduction

CKM matrix elements are fundamental parameters of the Standard Model and cannot be predicted.

Exploit the unitarity constraint to look for new physics → geometrical relation between CKM elements: angle from CP asymmetries, size from |V_{CKM}|.

Precision era: new physics may appear as a few percent disagreement: large new physics contributions to penguins would have already been seen.

We must make the green ring thinner → uncertainty dominated by |Vub|

Inclusive $|V_{cb}|: B \rightarrow X_c | v$

Inclusive $|V_{ub}|: B \rightarrow X_u | v$

Exclusive $|V_{cb}|: B \rightarrow D^{(*)} |V$

Exclusive $|V_{ub}|: B \rightarrow \pi |V|$

Semileptonic B decays

tree level, short distance:

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_b perturbative regime (α_s^n) .

Semileptonic B decays

tree level, short distance:

Decay properties depend directly on $|V_{cb}|$ & $|V_{ub}|$ and m_b perturbative regime (α_s^n).

But quarks are bound by soft gluons: non-perturbative long distance interactions of *b* quark with light quark.

+ long distance:

Exclusive Vs. Inclusive

One hadronic current.

Inclusive decays b→q l v:

Weak quark decay + QCD corrections.

 Γ_{c1} described by Heavy Quark Expansion in $(1/m_b)^n$ and α_s^k

$$\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 [[1 + A_{ew}] A_{nonpert} A_{pert}]$$

Non perturbative parameters need to be derived from data, i.e. from inclusive spectral moments of the semileptonic decay products.

Theoretically easier, more precise.

Exclusive decays $B \rightarrow X_q \mid \nu$:

Form factors: need lattice QCD.

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^2} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

i.e. Currently use B $\rightarrow \pi \mid v$ for $\mid V_{ub} \mid$ - one dominant form factor (q² shape and normalization needed).

Experimentally clean, a check of inclusive methods.

Inclusive decays: Big Picture

Moments from Babar

Recent moments results from Babar also include "mixed" moments PRD 81 032003 (2010)

Alternative extraction of the higher- $\langle n_X^2 \rangle^k$: order nonperturbative HQE parameters $n_X^2 = M_X^2 - 2\Lambda E_X + \Lambda^2$

Kinetic scheme	Mass moments	Mixed moments	Belle 2008 PRD78 032016 (2008)
$ V_{cb} 10^3$	42.05±0.83	41.91±0.85	41.58±0.90
m _b ^{kin} [GeV]	4.549±0.049	4.566±0.053	4.543±0.075

Different experiments in good agreement: confidence in OPE fits.

|V_{cb}| from Global Fit

HFAG averages different measurements in the Kinetic and 1S schemes: 27 from Babar, 25 from Belle, 12 from CDF+CLEO+DELPHI.

	Kinetic	: EPJ C34, 181 (2004)	1S: PRD70, 094017 (2004)		
CI	$ V_{cb} 10^3$	41.54±0.43±0.08±0.58	$ V_{cb} 10^3$	41.77±0.21±0.08	
S.L. +Rad.	$m_b^{\text{kin}}[\text{GeV}]$	4.620±0.035	m_b 1S[GeV]	4.689±0.028	
TRAU.	μ_{π}^2 [GeV ²]	0.440±0.040	λ_1 [GeV ²]	-0.336±0.022	
	$ V_{cb} 10^3$	41.31±0.49±0.08±0.58	$ V_{cb} 10^3$	42.14±0.33±0.08	
S.L.	m _b ^{kin} [GeV]	4.678±0.051	m_b 18[GeV]	4.630±0.047	
	μ_{π}^2 [GeV ²]	0.428±0.044	λ_1 [GeV ²]	-0.377±0.031	

Excellent agreement between 1S & kinetic scheme.

δ | Vcb | / | Vcb |

~1-2% dominated by theory uncertainties.

 $\sum_{0.042} \frac{20.043}{\sqrt{2/dof}} = 26.4/57 \frac{HFAG}{\sqrt{2009}} = 0.041 = 26.4/57 \frac{X_c lv}{\sqrt{2009}} = 26.4/57 \frac{X_c lv}{\sqrt{2009}} = 26.4/57 \frac{A}{\sqrt{2009}} =$

arXiv:0808.1297

Exclusive decays: $B \rightarrow D^{(*)}l \nu$

Differential decay rate:

$$\frac{d\Gamma}{dw}(B \to D\ell\nu) \sim (\text{Phase Space})|V_{cb}|^2 G(w)^2$$

$$\frac{d\Gamma}{dw}(B \to D^*\ell\nu) \sim (\text{Phase Space})|V_{cb}|^2 F(w)^2 \sum_{i=\pm 0,-} |H_i(w)|^2$$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_d}$$

Form factors can be parameterised:

$$G(w) = G(1)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3], \ z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w-1} + \sqrt{2}}$$

$$F(w) = \dots$$

From experiment

|Vcb| x F.F. @w=1 (0 recoil) ρ D, ρ D* (F.F. slopes)

From Lattice

 $G(1)=1.074\pm0.024$, NPPS 140, 461 (2005)

F(1)=0.921±0.024, **PRD 79 014506 (2009)**

B→D*l v from Belle

- Study charged and neutral B decays:
 - $B^0 \to D^{*-}l^+ \vee$, $D^* \to D^0\pi^-$ arXiv:0810.1657
 - $B^{\pm} \rightarrow D^{*0}|_{}^{+} \nu$, $D^{0*} \rightarrow D^{0}\pi^{0}$ arXiv:0910.3534
- Measure w and decay angles θ_{ℓ} , $\theta_{\rm v}$, χ

10000

8000

6000

4000

Fit 4-D decay rate

$$\frac{\mathrm{d}^4 \Gamma(B^+ \to \bar{D}^{*0} \ell^+ \nu_\ell)}{\mathrm{d}w \mathrm{d}(\cos \theta_\ell) \mathrm{d}(\cos \theta_V) \mathrm{d}\chi}$$

 $\cos\theta_{l}$

4000 3000

2000 1000

1.05 1.1 1.15 1.2 1.25 1.3

MC background, Fake I

MC background, Fake D*

B→D*l v from Belle

Results of 4-parameter HQET parameterization fit.

B+/B0 are consistent.

Relatively low values of F(1)|Vcb|.

Belle performs a model independent measurement of F.F. shapes.

Confirms use of Caprini et al. parameterisation.

Bette	B ⁰ →D*-l+ v arXiv:0810.1657	B [±] →D* ⁰ ⁺ v arXiv:0910.3534		
$\mathbf{\rho}^2$	1.293±0.045±0.029	1.376±0.074±0.056		
$R_1(1)$	1.495±0.050±0.062	1.620±0.091±0.092		
$R_2(1)$	$0.844 \pm 0.034 \pm 0.019$	$0.804 \pm 0.064 \pm 0.036$		
BR (%)	4.42±0.03±0.25	4.84±0.04±0.56		
$F(1) V_{cb} $	34.4±0.2±1.0	35.0±0.4±2.2		
X ² /dof	138.8/155	187.8/155		

B→D(*)l ν from Babar

Two recent, complementary, $B \rightarrow D \mid v$ results from Babar.

- Untagged, simultaneous fit of $B \rightarrow D^* | v \text{ and } B \rightarrow D |$ v, PRD 79, 012002 (2009)
- **Hadronic B-tag** measurement, PRL 104 011802 (2010)

Hadronic B-tag

$$|V_{cb}|G(1) = (42.3 \pm 1.9 \pm 1.4) \cdot 10^{-3}$$

 $\rho_D^2 = 1.20 \pm 0.09 \pm 0.04$
 $BR(B \rightarrow D \mid v) = (2.15 \pm 0.06 \pm 0.09)\%$

$|V_{cb}|$ from $B \rightarrow D^{(*)}l \nu$

DELPHI

$$|V_{cb}|G(1) = (42.3 \pm 0.7 \pm 1.3) \cdot 10^{-3}$$

 $|V_{cb}| = (39.4 \pm 1.4 \pm 0.9(FF)) \cdot 10^{-3}$

precision ~4%

 $B \rightarrow D^* | v$

OPAL

|V_{cb}| summary: Inclusive v Exclusive

Exclusive | Vcb | $\sim 2\sigma$ lower than inclusive

|Vub| Challenge

Limiting factor in CKM precision tests; known much less well than $|V_{cb}|$ CKM suppressed $V_{ub} \sim 0.1 \text{xV}_{cb}$ - therefore harder to measure.

$$\Gamma(b \to u\ell\bar{\nu}) = \frac{G_F^2}{192\pi^2} |V_{ub}|^2 m_b^5$$

The problem: $b \rightarrow clv$ decay

$$\frac{\Gamma(b \to u \ell \overline{\mathbf{v}})}{\Gamma(b \to c \ell \overline{\mathbf{v}})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

Inclusive |V_{ub}| Measurement

Cut away b \rightarrow clv: lose a part of the b \rightarrow ulv signal.

• We measure
$$\Gamma(B \to X_u \ell \nu) \times f_C = |V_{ub}|^2 \zeta_C$$

Total b → ulv rate

Cut-dependent constant predicted by theory

Fraction of the signal that pass the cut

→ corrected for QCD, motion of b-quark

$$f_c \sim 25\%$$
 for E_I>2.0 GeV,
 $f_c \sim 38\%$ for q²> 8 GeV²,
 $f_c \sim 65\%$ for Mx < 1.7 GeV

$$\Gamma(B \to X_u \ell \nu) = \frac{G_F^2 |V_{ub}|^2 m_b^5}{192\pi^3} \left[1 - O\left(\frac{\alpha_s}{\pi}\right) - \frac{9\lambda_2 - \lambda_1}{2m_b^2} + \cdots \right]$$

• Main uncertainty (±5%) from m_b⁵ but we need a reasonable fraction of the rate to control theory uncertainty.

Multivariate analysis from Belle

Belle analysis exploits non-linear correlations between kinematic and event variables available in B-full recon sample to separate $b \rightarrow u$ and $b \rightarrow c$.

PRL 104 2021801 (2010)

Boosted decision tree: use many event parameters from the full reconstruction sample: M_{miss}^2 , impact 10 parameters, Qtotal, Qlepton, Nlepton, Q (B), D* partial reco., N_{KS} , $N_{K\pm}$...

Measure the partial BR, with $p_{\text{lepton}} > 1.0 \text{ GeV/c}$.

→90 % total phase space!

$$\Delta \mathcal{B} = \frac{N_{b \to u}^{\Delta}}{(2\epsilon_{b \to u}^{\Delta} N_{\text{tag}})} (1 - \delta_{\text{rad}})$$

1.15x10⁶ Fully reconstructed *B*-mesons

Source	# Events
BDT selected	5544 ± 54
scaled off-resonance	35 ± 18
wrong B _{tag}	825 ± 38
$X_{\rm u}\ell\nu$	1032 ± 91
$X_c \ell \nu$	3615 ± 32
Secondary and fakes	38 ± 2

Inclusive |Vub| from Belle

 $\Delta BR(p^*_{lep}>1.0\text{GeV}) = 1.963 \ (1 \pm 0.088_{stat} \pm 0.081_{sys}) \ 10^{-3}$

Erro	or
breako	down
in ^o	%

sys.	detector/other		B → Xu I v		B → cl v			
	Det.	M_{bc}	SF	Excl	SS	Inc.	FF	Ex. BR
8.1	4.8		3.6	4.9	1.5	1.7		,

- •Gives single most precise | Vub |.
- •Lowest theory error on |Vub|, owing to greatest phase space coverage.

Inclusive |V_{ub}|

Extracted using several different methods and schemes e.g.

BLNP: PRD72:073006(2005)

DGE: JHEP 0601:097(2006)

GGOU: JHEP 0710:058(2007) BLL: PRD64:113004(2001)

$|V_{ub}|$ from $B \rightarrow \pi 1 \nu$

$$\frac{d\Gamma}{dq^2}(B \to \pi l \nu) = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+(q^2)|^2$$

Complementary experimental approaches:

- •Untagged (with ν reconstruction)
- Semileptonic B tags
- Hadronic B tags

Independent samples, different systematic uncertainties

Form-factor calculations using different methods

- •Unquenched lattice QCD (HPQCD, Fermilab)
- Light cone sum rules (Ball & Zwicky)
- Quark models (ISGW2)

Measurement in bins of q2→reduce model dependence

B→π/Q l v untagged from Babar

Latest preliminary untagged result from Babar measures simultaneously $(\pi^-, \pi^0, \rho^-, \rho^0)$ imposing isospin.

Neural-Network selection,

Binned maximum likelihood fit to $m_{ES} \& \Delta E$

in q^2 bins.

	q^2 Range (GeV ²)	$\Delta \zeta$ (ps ⁻¹)	$\frac{ V_{ub} }{(10^{-3})}$
$B \to \pi \ell \nu$			
LCSR [15]	0 - 16	5.44 ± 1.43	$3.63 \pm 0.12^{+0.59}_{-0.40}$
HPQCD [22]	16 - 26.4	2.02 ± 0.55	$3.21 \pm 0.17^{+0.55}_{-0.36}$
LCSR [15]	0 - 26.4	7.72 ± 2.32	$3.46 \pm 0.10^{+0.68}_{-0.43}$
HPQCD [22]	0 - 26.4	9.35 ± 3.22	$3.14 \pm 0.09^{+0.68}_{-0.43}$
$B \to \rho \ell \nu$			
LCSR [16]	0 - 16.0	13.79	2.75 ± 0.24
LCSR [16]	0 - 20.3	17.15	2.58 ± 0.22
ISGW2 [14]	0 - 20.3	14.20	2.83 ± 0.24

100

 $4 < q^2 < 8 \text{ GeV}^2$

5.15

5.2

5.25

 m_{ES} (GeV)

Simultaneous Babar and Lattice fit

Model independent expression based on analyticity (z expansion) => full q2 range

$$f_{+}(q^{2}) = \frac{1}{\mathcal{P}(q^{2})\phi(q^{2}, q_{0}^{2})} \sum_{k=0}^{k_{max}} a_{k}(q_{0}^{2})[z(q^{2}, q_{0}^{2})]^{k} \qquad z(q^{2}, q_{0}^{2}) = \frac{\sqrt{m_{+}^{2} - q^{2}} - \sqrt{m_{+}^{2} - q_{0}^{2}}}{\sqrt{m_{+}^{2} - q^{2}} + \sqrt{m_{+}^{2} - q_{0}^{2}}}$$

$$m_{+} = M_{B} + m_{\pi} \text{ and } q_{0}^{2} \text{ is a free parameter}$$

Simultaneous fit to data and lattice

$$|V_{ub}| = (3.05 \pm 0.29) \times 10^{-3}$$
 FNAL/MILC (6 points), $|V_{ub}| = (2.88 \pm 0.29) \times 10^{-3}$ FNAL/MILC (3 points), $|V_{ub}| = (2.93 \pm 0.37) \times 10^{-3}$ FNAL/MILC (1 point), 0.01 $|V_{ub}| = (3.01 \pm 0.35) \times 10^{-3}$ HPQCD (1 point), 0.005 precision @ 10%

|Vub| summary Inclusive vs. Exclusive

Exclusive < Inclusive \sim 1-2 σ , Greater discrepancy with z-fit.

Conclusions

Inclusive |V_{cb}|

High precision from HQE fits to moments (E_{lepton} , E_{γ} , M_X and n_X).

Exclusive |V_{cb}|

Significant progress for $B \rightarrow Dlv$.

Important cross-checks $D \Leftrightarrow D^*$, $D^{*+} \Leftrightarrow D^{*0}$.

Inclusive |Vub|

Limited by theory prediction of phase space acceptances.

New Belle result for 90% of phase space.

Exclusive $|V_{ub}|$, from $B \rightarrow \pi/\rho | \nu$

Limited by precision of form-factor calculations.

Combined fit to data and lattice points with reduced error.

2010 Precision

	V _{cb}	V _{ub}
inclusive	1-2%	6-7%
exclusive	3%	10%
difference	~2 o	~1-2 o