Moriond EW 2010

Measurements of the Unitarity Triangle Sides
 $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from Semileptonic B decays

Phillip Urquijo
Syracuse University
(for the Belle Collaboration)

Introduction

CKM matrix elements are fundamental parameters of the Standard Model and cannot be predicted.

Exploit the unitarity constraint to look for new physics \rightarrow geometrical relation between CKM elements: angle from CP asymmetries, size from $\left|\mathrm{V}_{\text {CKM }}\right|$.

Precision era: new physics may appear as a few percent disagreement: large new physics contributions to penguins would have already been seen.

We must make the green ring thinner \rightarrow uncertainty dominated by $|\mathrm{Vub}|$

$$
\begin{array}{ll}
\text { Inclusive }\left|\mathrm{V}_{\mathrm{cb}}\right|: \mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} \mid \mathrm{V} & \text { Inclusive }\left|\mathrm{V}_{\mathrm{ub}}\right|: \mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mid \mathrm{V} \\
\text { Exclusive }\left|\mathrm{V}_{\mathrm{cb}}\right|: \mathrm{B} \rightarrow \mathrm{D}^{(*)} \mid \mathrm{v} & \text { Exclusive }\left|\mathrm{V}_{\mathrm{ub}}\right|: \mathrm{B} \rightarrow \pi \mathrm{~V}
\end{array}
$$

Semileptonic B decays

tree level, short distance:

$$
b \rightarrow c e v
$$

Decay properties depend directly on $\left|V_{c b}\right| \&\left|V_{u b}\right|$ and m_{b}
perturbative regime $\left(\alpha_{s}{ }^{n}\right)$.

Semileptonic B decays

tree level, short distance:

$$
\mathrm{B} \rightarrow \mathrm{Dev}
$$

Decay properties depend directly on $\left|V_{c b}\right| \&\left|V_{u b}\right|$ and m_{b} perturbative regime ($\boldsymbol{\alpha}_{\mathrm{s}}{ }^{\mathrm{n}}$).

But quarks are bound by soft gluons: non-perturbative long distance interactions of b quark with light quark.

+ long distance:

Exclusive Vs. Inclusive

 One hadronic current.Inclusive decays $\mathbf{b} \rightarrow \mathbf{q} I \mathbf{v}$:
Weak quark decay + QCD corrections.

$$
\Gamma\left(B \rightarrow X_{c} \ell \nu\right)=\frac{G_{\mathrm{F}}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2}\left[\left[1+\mathrm{A}_{\text {ew }}\right] \mathrm{A}_{\text {nonpert }} \mathrm{A}_{\text {pert }}\right]
$$

Non perturbative parameters need to be derived from data, i.e. from inclusive spectral moments of the semileptonic decay products.

Theoretically easier, more precise.

Exclusive decays $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{q}} \mathrm{I} \mathbf{v}$:

Form factors: need lattice QCD.

$$
\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}=\frac{G_{\mathrm{F}}^{2}}{24 \pi^{2}}\left|V_{u b}\right|^{2} p_{\pi}^{3}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

i.e. Currently use $B \rightarrow \pi \mid v$ for $\left|V_{u b}\right|$ - one dominant form factor (q^{2} shape and normalization needed).

Experimentally clean, a check of inclusive methods.

Inclusive decays: Big Picture

Moments from Babar

Recent moments results from Babar also include "mixed" moments PRD 81032003 (2010)

Alternative extraction of the higher- $\left.\quad<\mathrm{n}^{2}\right\rangle^{k}$: order nonperturbative HQE parameters

$$
n x^{2}=M x^{2}-2 \Lambda E_{x}+\Lambda^{2}
$$

Kinetic scheme	Mass moments	Mixed moments	Belle 2008 PRD78 $\mathbf{0 3 2 0 1 6}(2008)$
$\left\|\boldsymbol{V}_{\mathrm{c} \boldsymbol{b}}\right\| \mathbf{1 0}^{\mathbf{3}}$	42.05 ± 0.83	41.91 ± 0.85	41.58 ± 0.90
$\boldsymbol{m}_{b}{ }^{\text {kin }}[\mathrm{GeV}]$	4.549 ± 0.049	4.566 ± 0.053	4.543 ± 0.075

Different experiments in good agreement: confidence in OPE fits.

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ from Global Fit

HFAG averages different measurements in the Kinetic and 1S schemes:
27 from Babar, 25 from Belle, 12 from CDF+CLEO+DELPHI.

	Kinetic: EPJ C34, 181 (2004)		1S: PRD70, 094017 (2004)	
$\begin{gathered} \text { S.L. } \\ + \text { Rad. } \end{gathered}$	$\left\|V_{c b}\right\| 10^{3}$	$41.54 \pm 0.43 \pm 0.08 \pm 0.58$	$\left\|V_{c b}\right\| 10^{3}$	$41.77 \pm 0.21 \pm 0.08$
	$m_{b}{ }^{\text {kin }}[\mathrm{GeV}]$	4.620 ± 0.035	$m_{b}{ }^{15}$ [GeV]	4.689 ± 0.028
	$\mu_{\pi}{ }^{2}\left[\mathrm{GeV}^{2}\right]$	0.440 ± 0.040	$\lambda_{1}\left[\mathrm{GeV}^{2}\right]$	-0.336 ± 0.022
S.L.	$\left\|V_{c b}\right\| 10^{3}$	$41.31 \pm 0.49 \pm 0.08 \pm 0.58$	$\left\|V_{c b}\right\| 10^{3}$	$42.14 \pm 0.33 \pm 0.08$
	$m_{b}{ }^{\text {kin }}$ [GeV]	4.678 ± 0.051	$m_{b}{ }^{15}$ [GeV]	4.630 ± 0.047
	$\mu_{\pi}{ }^{2}\left[\mathrm{GeV}^{2}\right]$	0.428 ± 0.044	$\lambda_{1}\left[\mathrm{GeV}^{2}\right]$	-0.377 ± 0.031

Excellent agreen
between $1 \mathrm{~S} \& \mathrm{k}$
scheme.
$\mathbf{\delta}|\mathbf{V c b}| /|\mathbf{V c b}|$
~1-2\% dominated by theory uncertainties.
arXiv:0808.1297

Exclusive decays: $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{l} v$

Differential decay rate:

$$
\begin{aligned}
\frac{d \Gamma}{d w}(B \rightarrow D \ell \nu) & \sim(\text { Phase Space })\left|V_{c b}\right|^{2} G(w)^{2} \\
\frac{d \Gamma}{d w}\left(B \rightarrow D^{*} \ell \nu\right) & \sim(\text { Phase Space })\left|V_{c b}\right|^{2} F(w)^{2} \sum_{i=+, 0,-}\left|H_{i}(w)\right|^{2}
\end{aligned} \quad w=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{d}}
$$

Form factors can be parameterised:

$$
\begin{aligned}
& G(w)=G(1)\left[1-8 \rho^{2} z+\left(51 \rho^{2}-10\right) z^{2}-\left(252 \rho^{2}-84\right) z^{3}\right], z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w-1}+\sqrt{2}} \\
& F(w)=\ldots
\end{aligned}
$$

From experiment

\mid Vcb| x F.F. @w=1 (0 recoil)
$\rho D, \rho D^{*}$ (F.F. slopes)

$$
\begin{aligned}
& \text { From Lattice } \\
& \mathrm{G}(1)=1.074 \pm 0.024, \text { NPPS 140, } 461 \text { (2005) } \\
& \mathrm{F}(1)=0.921 \pm 0.024, \text { PRD } 79014506 \text { (2009) }
\end{aligned}
$$

$\mathrm{B} \rightarrow \mathrm{D}^{*} l v$ from Belle

- Study charged and neutral B decays:
- $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*-I^{+}} \mathrm{v}, \mathrm{D}^{*} \rightarrow \mathrm{D}^{0} \pi$ - arXiv:0810.1657
- $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{* 0 \mid+} \mathrm{v}, \mathrm{D}^{0 *} \rightarrow \mathrm{D}^{0} \pi^{0}$ arXiv:0910.3534
- Measure w and decay angles $\theta_{\ell}, \theta_{v}, X$
- Fit 4-D decay rate $\frac{\mathrm{d}^{4} \Gamma\left(B^{+} \rightarrow \bar{D}^{* 0} \ell^{+} \nu_{\ell}\right)}{\mathrm{d} w \mathrm{~d}\left(\cos \theta_{\ell}\right) \mathrm{d}\left(\cos \theta_{V}\right) \mathrm{d} \chi}$

$$
\mathrm{B}^{0} \rightarrow \mathrm{D}^{*-I^{+}} \mathrm{V} \quad \quad \mathcal{B} 140 \mathrm{fb}^{-1} \quad \mathrm{~B}^{ \pm} \rightarrow \mathrm{D}^{* 0} I^{+} v
$$

$\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{l} v$ from Belle

Results of 4-parameter HQET parameterization fit.

B+/B0 are consistent.
Relatively low values of $\mathrm{F}(1)|\mathrm{Vcb}|$.

\mathcal{P}	$B^{0} \rightarrow D^{*-I+} v$ arXiv:0810.1657	$B^{ \pm} \rightarrow D^{* 0} \\|^{+} v$ arXiv:0910.3534
P^{2}	$1.293 \pm 0.045 \pm 0.029$	$1.376 \pm 0.074 \pm 0.056$
$R_{1}(1)$	$1.495 \pm 0.050 \pm 0.062$	$1.620 \pm 0.091 \pm 0.092$
$\mathrm{R}_{2}(1)$	$0.844 \pm 0.034 \pm 0.019$	$0.804 \pm 0.064 \pm 0.036$
BR(\%)	$4.42 \pm 0.03 \pm 0.25$	$4.84 \pm 0.04 \pm 0.56$
$F(1)\left\|V_{c b}\right\|$	$34.4 \pm 0.2 \pm 1.0$	$35.0 \pm 0.4 \pm 2.2$
X ${ }^{2} /$ dof	138.8/155	187.8/155

Belle performs a model independent measurement of F.F. shapes.

Confirms use of Caprini et al. parameterisation.

$\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{l} v$ from Babar

Two recent, complementary, $\mathrm{B} \rightarrow \mathrm{D} \mid \mathrm{v}$ results from Babar.

- Untagged, simultaneous fit of $B \rightarrow D^{*} \vee$ and $B \rightarrow D$ v, PRD 79, 012002 (2009)
- Hadronic B-tag measurement, PRL 104011802 (2010)

Hadronic B-tag

417 fb $^{-1}$

$$
\begin{aligned}
& \left|V_{\text {cb }}\right| G(1)=(42.3 \pm 1.9 \pm 1.4) 10^{-3} \\
& \rho_{D^{2}=1.20 \pm 0.09 \pm 0.04}^{B R(B-\rightarrow D \mid V)=(2.15 \pm 0.06 \pm 0.09) \%}
\end{aligned}
$$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $\left.\mathrm{B} \rightarrow \mathrm{D}^{*}\right) 1 v$

| $\mathrm{V}_{\mathrm{cb}} \mid$ summary: Inclusive v Exclusive

HFAG averages

Exclusive | Vcb| $\sim 2 \sigma$ lower than inclusive

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ Challenge

Limiting factor in CKM precision tests; known much less well than $\left|\mathrm{V}_{\mathrm{cb}}\right|$ CKM suppressed $\mathrm{V}_{\mathrm{ub}} \sim 0.1 \times \mathrm{V}_{\mathrm{cb}}$ - therefore harder to measure.

$$
\Gamma\left(b \rightarrow u \ell^{-} \bar{v}\right)=\frac{G_{F}^{2}}{192 \pi^{2}}\left|V_{u b}\right|^{2} m_{b}^{5}
$$

The problem: $b \rightarrow c / v$ decay

$$
\frac{\Gamma(b \rightarrow u \ell \bar{v})}{\Gamma(b \rightarrow c \ell \bar{v})} \approx \frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}} \approx \frac{1}{50}
$$

Inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ Measurement

- Cut away $b \rightarrow$ clv: lose a part of the $b \rightarrow$ ulv signal.
- We measure $\left.\Gamma\left(B \rightarrow X_{u} \ell \nu\right) \times f_{C}=\left|V_{u b}\right|^{2} \zeta_{C}\right)$

Total $b \rightarrow$ ulv rate

> Cut-dependent constant predicted
> by theory

Fraction of the signal that pass the cut
\rightarrow corrected for QCD, motion of b-quark

$$
\Gamma\left(B \rightarrow X_{u} \ell \nu\right)=\frac{G_{F}^{2}\left|V_{u b}\right|^{2} m_{b}^{5}}{192 \pi^{3}}\left[1-\mathrm{O}\left(\frac{\alpha_{s}}{\pi}\right)-\frac{9 \lambda_{2}-\lambda_{1}}{2 m_{b}^{2}}+\cdots\right]
$$

- Main uncertainty ($\pm 5 \%$) from $\mathrm{m}_{\mathrm{b}}{ }^{5}$ but we need a reasonable fraction of the rate to control theory uncertainty.

Multivariate analysis from Belle

Belle analysis exploits non-linear correlations between kinematic and event variables available in B-full recon sample to separate $b \rightarrow u$ and $b \rightarrow c$.

PRL 1042021801 (2010)

Boosted decision tree: use many event parameters from the full reconstruction sample: $M_{\text {miss }}{ }^{2}$, impact ${ }^{\circ}{ }^{10}$ parameters, Qtotal, Qlepton, N ${ }_{\text {lepton, }}$ Q (B), D* partial reco., $\mathrm{N}_{\mathrm{Ks},} \mathrm{N}_{\mathrm{K} \pm} \ldots$

Measure the partial BR, with $p_{\text {lepton }}>1.0 \mathrm{GeV} / \mathrm{c}$.
$\rightarrow \mathbf{9 0} \%$ total phase space!

$$
\Delta \mathcal{B}=\frac{N_{b \rightarrow u}^{\Delta}}{\left(2 \epsilon_{b \rightarrow u}^{\Delta} N_{\mathrm{tag}}\right)}\left(1-\delta_{\mathrm{rad}}\right)
$$

1.15×10^{6} Fully reconstructed B-mesons

Source	\# Events
BDT selected	5544 ± 54
scaled off-resonance	35 ± 18
${\text { wrong } B_{\text {tag }}}^{X_{\mathrm{u}} \ell v}$	825 ± 38
$\mathrm{X}_{\mathrm{c}} \ell v$	1032 ± 91
Secondary and fakes	3615 ± 32

Inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from Belle

-Gives single most precise | Vub|.
\cdot Lowest theory error on |Vub|, owing to greatest phase space coverage.

Inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$

Extracted using several different methods and schemes e.g.

BLNP: PRD72:073006(2005) GGOU: JHEP 0710:058(2007) DGE: JHEP 0601:097(2006) BLL: PRD64:113004(2001)

$\left|V_{u b}\right|$ from $B \rightarrow \pi l v$

Complementary experimental approaches:

$$
\frac{d \Gamma}{d q^{2}}(B \rightarrow \pi l v)=\frac{G_{F}^{2}}{24 \pi^{3}} p_{\pi}^{3}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

-Untagged (with v reconstruction)
-Semileptonic B tags

- Hadronic B tags

Independent samples, different systematic uncertainties

Form-factor calculations using different methods
-Unquenched lattice QCD (HPQCD, Fermilab)
-Light cone sum rules (Ball \& Zwicky)

- Quark models (ISGW2)

$\mathrm{B} \rightarrow \pi / \mathrm{Q} l v$ untagged from Babar

Latest preliminary untagged result from Babar measures simultaneously ($\pi^{-}, \pi^{0}, \rho^{-}, \rho^{0}$) imposing isospin.

Neural-Network selection,
Binned maximum likelihood fit to $\mathrm{m}_{\mathrm{ES}} \& \Delta \mathrm{E}$
in q^{2} bins.

Simultaneous Babar and Lattice fit

Model independent expression based on analyticity (z expansion) => full q2 range

$$
f_{+}\left(q^{2}\right)=\frac{1}{\mathcal{P}\left(q^{2}\right) \phi\left(q^{2}, q_{0}^{2}\right)} \sum_{k=0}^{k_{\text {max }}} a_{k}\left(q_{0}^{2}\right)\left[z\left(q^{2}, q_{0}^{2}\right)\right]^{k} \quad z\left(q^{2}, q_{0}^{2}\right)=\frac{\sqrt{m_{+}^{2}-q^{2}}-\sqrt{m_{+}^{2}-q_{0}^{2}}}{\sqrt{m_{+}^{2}-q^{2}}+\sqrt{m_{+}^{2}-q_{0}^{2}}}
$$

$$
m_{+}=M_{B}+m_{\pi} \text { and } q_{0}^{2} \text { is a free parameter }
$$

Simultaneous fit to data and lattice

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ summary Inclusive vs. Exclusive

Inclusive
Exclusive

Exclusive < Inclusive ~1-2 σ, Greater discrepancy with z-fit.

AOnctusions

Inclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$
High precision from HQE fits to moments (Elepton, $E \gamma, M_{x}$ and $\left.n_{X}\right)$.
Exclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$
2010 Precision
Significant progress for $B \rightarrow$ Dlv. Important cross-checks $\mathrm{D} \Leftrightarrow \mathrm{D}^{*}, \mathrm{D}^{*+} \Leftrightarrow \mathrm{D}^{* 0}$.

Inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$

Limited by theory prediction of phase space acceptances.

New Belle result for 90% of phase space.
Exclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$, from $\mathrm{B} \rightarrow \pi / \rho \mid \mathrm{V}$
Limited by precision of form-factor calculations.
Combined fit to data and lattice points with reduced error.

