The Tevatron's Search for Low Mass Higgs Bosons

Wade Fisher Michigan State University

On behalf of the CDF & DØ Collaborations

March 7th 2010

Fermilab

Outline

Moriond EW March 7th 2010

- ✗ Low Mass Higgs Bosons at the Tevatron

 (ie, H→bb searches)

 Theory & existing evidence
 Higgs production & decay at the Tevatron
 Low mass Higgs search strategies
 Upper limits on Higgs production rates
- <image>

X Outlook & ConclusionsProspects for the future

The Case for the Higgs

Moriond EW March 7th 2010

The Standard Model of particle physics Describes known particles & interactions Does **not** describe mass generation The BEGHHK* mechanism may be a solution

The theory predicts a new particle, but not its mass

If it exists, the mass must be determined experimentally

* F. Englert and R. Brout, Phys. Rev. Lett. 13: 321-323 (1964);

P.W. Higgs, Phys. Rev. Lett. 13: 508-509 (1964);

G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble, Phys. Rev. Lett. 13: 585-587 (1964). Wade Fisher Tevatron Low Mass Higgs Searches

Experimental Constraints

 Existing experimental results can point us in the right direction Direct search at LEPII resulted in lower mass bound: M_H>114.4 GeV Refinements of top-quark and W-boson masses can indicate Higgs mass Top Mass: CDF+DØ: 173.1 ± 0.6 (stat) ± 1.1 (syst) GeV

 Existing experimental results can point us in the right direction Direct search at LEPII resulted in lower mass bound: M_H>114.4 GeV Refinements of top-quark and W-boson masses can indicate Higgs mass A fit of precision electroweak data yields: M_H < 186 GeV at 95% C.L. (M_H < 157 GeV not including the LEP II limit)

 The interactions between SM particles and the Higgs give indirect evidence Direct search at LEPII resulted in lower mass bound: M_H>114.4 GeV
 Refinements of top-quark and W-boson masses can indicate Higgs mass
 A fit of precision electroweak data yields: M_H < 186 GeV at 95% C.L. (M_H < 157 GeV not including the LEP II limit)

The Continued Higgs Search

 Generations of physicists are eagerly awaiting the next chapter The Tevatron collider provides an excellent hunting ground
 Both experiments (CDF & DØ) have been delivered >8 fb⁻¹ as of March 2010
 One more year of running planned beyond 2010

Tevatron Accelerator Complex

CDF

Tevatron Experiments

 <u>Tevatron experiments:</u> multipurpose detectors with broad particle-ID capability Stable detectors and trigger. No further upgrades planned.
 Efficient data taking through the highest instantaneous luminosities

Tevatron Higgs Search Strategy

Arategy Moriond EW March 7th 2010

140

160

180

 m_H (GeV/c²)

Higgs production via gluon fusion dominates at the Tevatron

> Large multijet background makes fully hadronic searches difficult

Next largest rate is associated production of W/Z bosons + Higgs

Leptonic decays of W/Z bosons provide a tag for triggering and analysis

100

120

Wade Fisher

Tevatron Low Mass Higgs Searches

200

Moriond EW March 7th 2010

Maximum sensitivity at high mass, also useful at low mass *Discussed in the next talk*

$WH \rightarrow l\nu bb$

✗ Identify events consistent with W decays

Trigger on **electrons** or **muons**

Select significant missing transverse energy (MET) as a signature for neutrinos

× Select events with 2 or 3 jets

Modeling of dijet invariant mass is crucial

for detection of $H \rightarrow bb$ mass resonance

Wade Fisher

$ZH \rightarrow llbb$

✗ Di-lepton Z boson decays make this channel:

Easier: More efficient trigger, smaller multi-jet background, reconstructed Z mass provides reliable handle on event.

<u>Harder:</u> Very small signal rate, more sensitive to lepton ID efficiency loss.

Select two leptons & at least two jets
 Low MET final state enables the use of kinematic fitting to improve dijet mass resolution.

Moriond EW

$ZH \rightarrow \nu \nu bb$

★ For $ZH \rightarrow vvbb$ the search is more difficult: no charged leptons!

Rely on large MET (neutrinos!)

Backgrounds:

<u>"Physics":</u> Z+jets, W+jets, top-pair, ZZ, WZ

<u>"Instrumental":</u> Multijets with mis-measured jets

Trigger on large MET + 2 jets, veto on leptons, improve multijet prediction by refining MET measurements.

Tevatron Low Mass Higgs Searches

Identifying b Quarks

Moriond EW March 7th 2010

Background reduction via the identification of displaced jet decay vertices (b-Tagging) <u>Typical tag efficiency:</u> 50-70% real b quarks 0.5-5% light quarks

Categorize events based on number and quality of b-tagged jets. Select orthogonal samples of:

- X Two b-tagged jets
- ✗ Exactly one b-tagged jet

Tevatron Low Mass Higgs Searches

Limits on Higgs Production

Each experiment constructs 25-30 orthogonal H \rightarrow bb searches Combined results for all Higgs search channels for each experiment Both experiments find expected limits near ~2.5×SM at M_H = 115 GeV.

 M_{H} =115 GeV: DØ 4.0 (2.8) observed (expected)

 M_{H} =115 GeV: CDF 3.1 (2.4) observed (expected)

Tevatron Low Mass Higgs Searches

Moriond EW

March 7th 2010

Combined CDF+DØ results in 2.0-5.4 fb⁻¹

 M_{H} =115 GeV: 2.70 (1.78) observed (expected)

Combined CDF+DØ results in 2.0-5.4 fb⁻¹

 M_{H} =115 GeV: 2.70 (1.78) observed (expected)

Averaged by channel sensitivity, this result corresponds to 4.4 fb⁻¹ of analyzed luminosity per experiment

Wade Fisher

Higgs Sensitivity Projections

Can project sensitivity as a function of analyzed luminosity

~5 fb⁻¹ available for analysis in 2009

~10 fb⁻¹ available for analysis in 2011

Benchmark scenario:

Assumes analysis design will remain similar to today's designs

Assumes we achieve potential for known sources of improvement

Expect to improve a range of analysis aspects: dijet mass resolution, b-tagging performance, detector acceptance, add missing search channels, and others

Conclusions

- We are working hard to find a Higgs boson
 Dedicated efforts at CDF & DØ are boosted by excellent Tevatron performance
 - Low mass Higgs searches are mature and beginning to explore broad improvements to analysis technique
 - Expected limits are within a factor of 2.2 of the Standard Model prediction for all masses
- It's an exciting time to be a Higgs hunter!
 We expect >2.3x more luminosity to analyze for M_H<135 GeV

Expect constant improvement for all mass ranges as our search matures

Tevatron Run II Preliminary, L=2.0-5.4 fb⁻¹

Extra Slides

Higgs Sensitivity Projections

