Extraction of the \$\phi_{(1020)}\$\rightarrow KK signal with early CMS data

Luca Perrozzi

(University & INFN Padova)

on behalf of the CMS collaboration

Moriond/EW: XLVth Rencontres de Moriond on Electroweak Interactions and Unified Theories

6-13 Mar 2010, La Thuile, Val d'Aosta (Italia)

Introduction

- The first LHC collisions at center of mass energies of 900 GeV were recorded by the CMS detector in Dec. 2009
- The trajectories of charged particles produced in the collisions were reconstructed using the silicon tracker and their momenta were measured in the 3.8 T solenoidal magnetic field
- Tracks were used to reconstruct the decays of several hadrons, including K_s^0 , Λ , and ϕ
- The performance of track reconstruction has been assessed in the data and is compared to the expectation from simulation

CMS Tracker sketch

- Schematic (y,z) view of the tracker divided into:
 - Pixel Detector (PD)
 - Microstrips System (beyond a radius of about 20 cm) sub-divided into:
 - Tracker Inner Barrel (TIB) and Discs (TID)
 - Tracker Outer Barrel (TOB) and Tracker Endcaps (TEC).

Dataset and selection

Analyzed data from 900 GeV pp collisions

- Track quality requirements:
 - $\checkmark p_t > 0.5 \text{ GeV/c}$
 - ✓ |η| < 2.0
 - $|d_{xy}| < 0.3$ cm wrt beamspot
 - ✓ Number of hits > 5
 - ✓ Reduced chi2 < 2

 $\phi \to K^+K^-$ candidates formed by combining all the opposite charge tracks passing above criteria and dE/dx selection (see next slide)

dE/dx selection

- Charged particles lose energy in the silicon due to ionization
- dE/dx distribution changes for different particles (e.g. p,π,K)
 - for p<1 GeV/c dE/dx a selection cut can be applied to further improve our analysis

dE/dx rejected combinations

 Combinations in which at least one of the tracks fails the dE/dx cut: no φ mass peak is visible

Signal extraction

- We fit the mass spectrum using the sum of two functions:
 - a Voigtian (convolution of a relativistic Breit-Wigner shape and a Gaussian smearing) for the ϕ signal
 - a simple arctangent form for the background

Signal extraction

- We fit the mass spectrum using the sum of two functions:
 - a Voigtian (convolution of a relativistic Breit-Wigner shape and a Gaussian smearing) for the φ signal
 - a simple arctangent form for the background

Conclusions

- The CMS detector recorded the first LHC collisions during last December
 - Several hadron resonances have been reconstructed using the inner tracker to assess its physics performance
- We reconstructed a sample of is $1728 \pm 102 \phi \rightarrow KK$ candidates
- The reconstructed mass is $1019.58 \pm 0.22 \text{ MeV/}c^2$
 - This value sits just 0.59σ above the world average value (1019.45 MeV/ c^2)
- The mass resolution is $1.29 \pm 0.32 \text{ MeV/}c^2$
 - In very good agreement with Monte Carlo simulation (1.41 \pm 0.22) MeV/ c^2

901/90