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We present the lepton flavor model with ∆(54). Our model reproduces the tri-bimaximal
mixing in the parameter region around degenerate neutrino masses or two massless neutrinos.
We also study SUSY breaking terms in the slepton sector. Three families of left-handed and
right-handed slepton masses are almost degenerate. Our model leads to smaller values of
flavor changing neutral currents than the present experimental bounds.

1 Introduction

Recent experimental data of the neutrino oscillation indicate the tri-bimaximal form 1 of mixing
angles in the lepton sector within a good accuracy2. Thus, it is a promising step to study how to
realize the tri-bimaximal mixing matrix, in order to understand the origin of the lepton flavor.
Many authors have been attempting it by using various scenarios. Non-Abelian discrete flavor
symmetries can provide a natural guidance to constrain many free parameters in the Yukawa
sector. Actually, several types of models with various non-Abelian discrete flavor symmetries
have been proposed, such as S3, D4, Q4, Q6, A4, T ′, S4, ∆(27). In addition to the above
(rather) bottom-up motivation, we also have a top-down motivation. Certain classes of non-
Abelian flavor symmetries can be derived from superstring theories. For example, D4 and ∆(54)
flavor symmetries can be obtained in heterotic orbifold models 3. In addition to these flavor
symmetries, the ∆(27) flavor symmetry can be derived from magnetized/intersecting D-brane
models 4. Thus, it is quite important to study phenomenological aspects of these non-Abelian
flavor symmetries.

Here, we focus on the ∆(54) discrete symmetry 5,6. Although it includes several interesting
aspects, few authors have considered up to now. The first aspect is that it consists of two types of
Z3 subgroups and an S3 subgroup. The S3 group is known as the minimal non-Abelian discrete
symmetry, and the semi-direct product structure of ∆(54) between Z3 and S3 induces triplet
irreducible representations. That suggests that the ∆(54) symmetry could lead to interesting
models.

2 ∆(54) flavor model for leptons

The group ∆(54) has irreducible representations 11, 12, 21, 22, 23, 24, 3(1)
1 , 3(2)

1 , 3(1)
2 , and 3(2)

2 .
There are four triplets and products of 3(1)

1 × 3(2)
1 and 3(1)

2 × 3(2)
2 lead to the trivial singlet. The

relevant multiplication rules are shown in 5.
We present the model of the lepton flavor with the ∆(54) group. The triplet representations

of the group correspond to the three generations of leptons. The left-handed leptons (le, lµ, lτ ),



(le, lµ, lτ ) (ec, µc, τ c) (N c
e , N c

µ, N c
τ ) hu(d) χ1 (χ2, χ3) (χ4, χ5, χ6)

∆(54) 3(1)
1 3(2)

2 3(2)
1 11 12 21 3(2)

1

Table 1: Assignments of ∆(54) representations

the right-handed charged leptons (ec, µc, τ c) and the right-handed neutrinos (N c
e , N c

µ, N c
τ ) are

assigned to 3(1)
1 , 3(2)

2 , and 3(2)
1 , respectively. New scalars are supposed to be SU(2) gauge

singlets. χ1, (χ2, χ3) and (χ4, χ5, χ6) are assigned to 12, 21, and 3(2)
1 of the ∆(54) representations,

respectively. The particle assignments of ∆(54) are summarized in Table 1. The usual Higgs
doublets hu and hd are assigned to the trivial singlet 11 of ∆(54).

We assume that the scalar fields, hu,d and χi, develop their vacuum expectation values
(VEVs) as follows:

⟨hu⟩ = vu, ⟨hd⟩ = vd, ⟨χi⟩ = αiΛ, (1)

where i = 1, · · · 6 and Λ is the cutoff scale. We obtain the diagonal matrix for charged leptons

Ml = yl
1vd

α1 0 0
0 α1 0
0 0 α1

 + yl
2vd

ωα2 − α3 0 0
0 ω2α2 − ω2α3 0
0 0 α2 − ωα3

 , (2)

By using the seesaw mechanism Mν = MT
DM−1

N MD, the neutrino mass matrix can be obtained.
In our model, the lepton mixing comes from the structure of the neutrino mass matrix. In order
to reproduce the maximal mixing between νµ and ντ , we take α5 = α6, and then we have

Mν =
y2

Dv2
u

Λd

 y2
1α

2
5 − y2

2α
2
4 −y1y2α

2
5 + y2

2α4α5 −y1y2α
2
5 + y2

2α4α5

−y1y2α
2
5 + y2

2α4α5 y2
1α4α5 − y2

2α
2
5 −y1y2α

2
4 + y2

2α
2
5

−y1y2α
2
5 + y2

2α4α5 −y1y2α
2
4 + y2

2α
2
5 y2

1α4α5 − y2
2α

2
5

 , (3)

where d = y3
1α4α5α6 − y1y

2
2α

3
4 − y1y

2
2α

3
5 − y1y

2
2α

3
6 + 2y3

2α4α5α6. From now on, we denote yD

as Yukawa coupling of Dirac neutrino and y1, y2 of Majorana neutrino. Above mass matrix
indicates θ23 = 45◦, θ13 = 0 and

θ12 =
1
2

arctan
2
√

2y2α5

y1α5 + y2α4 − y1α4
(y2α4 ̸= y1α5). (4)

Neutrino masses are given by

m1 =
y2

Dv2
u

Λd
[y2

1α
2
5 − y2

2α
2
4 −

√
2(−y1y2α

2
5 + y2

2α4α5) tan θ12],

m2 =
y2

Dv2
u

Λd
[y2

1α4α5 − y1y2α
2
4 +

√
2(−y1y2α

2
5 + y2

2α4α5) tan θ12],

m3 =
y2

Dv2
u

Λd
[y2

1α4α5 + y1y2α
2
4 − 2y2

2α
2
5], (5)

which are reconciled with the normal hierarchy of neutrino masses in the case of y1α5 ≃ y2α4.
Now, we can estimate magnitudes of αi(i = 4, 5, 6) by using Eq.(5) and assuming α4 ≃ α5 =

α6. If we take all Yukawa couplings to be order one, Eq.(5) turns to be v2
u ∼ Λα4m3 because of

d ∼ α3
4. Putting vu ≃ 165GeV (tan β = 3), m3 ≃

√
∆m2

atm ≃ 0.05eV, and Λ = 2.43 × 1018GeV,
we obtain α4 = O(10−4 − 10−3). Thus, values of αi(i = 4, 5, 6) are enough suppressed to discuss
perturbative series of higher mass operators.



3 Numerical result

We show our numerical analysis of neutrino masses and mixing angles in the normal mass
hierarchy. Neglecting higher order corrections of mass matrices, we obtain the allowed region
of parameters and predictions of neutrino masses and mixing angles. Here, we neglect the
renormalization effect of the neutrino mass matrix because we suppose the normal hierarchy of
neutrino masses and take tan β = 3.

Input data of masses and mixing angles are taken in the region of 3σ of the experimental
data 2:

∆m2
atm = (2.07 ∼ 2.75) × 10−3eV2 , ∆m2

sol = (7.05 ∼ 8.34) × 10−5eV2 ,

sin2 θatm = 0.36 ∼ 0.67 , sin2 θsol = 0.25 ∼ 0.37 , sin2 θreactor ≤ 0.056 , (6)

and Λ = 2.43 × 1018GeV is taken. We fix yD = y1 = 1 as a convention, and vary y2/y1. The
change of yD and y1 is absorbed into the change of αi(i = 4, 5, 6). If we take a smaller value of
y1, values of αi scale up. On the other hand, if we take a smaller value of yD, the magnitude
of αi scale down. As expected in the discussion of previous section, the experimentally allowed
values are reproduced around α4 = α5 = α6.

We can predict the deviation from the tri-bimaximal mixing. The remarkable prediction is
given in the magnitude of sin2 θ13. In Figures 1 (a) and (b), we plot the allowed region of mixing
angles in planes of sin2 θ12-sin2 θ13 and sin2 θ23-sin2 θ13, respectively. It is found that the upper
bound of sin2 θ13 is 0.01. It is also found the strong correlation between sin2 θ23 and sin2 θ13.
Unless θ23 is deviated from the maximal mixing considerably, θ13 remains to be tiny. This is a
testable relation in this model.
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Figure 1: Prediction of the upper bound of sin2 θ13 on (a) sin2 θ12 − sin2 θ13 and (b) sin2 θ23 − sin2 θ13 planes.

4 SUSY breaking terms

In this section, we study SUSY breaking terms, which are predicted in our ∆(54) model. We
consider the gravity mediation within the framework of supergravity theory. Let us study soft
scalar masses. Within the framework of supergravity theory, soft scalar mass squared is obtained
as 7

m2
ĪJKĪJ = m2

3/2KĪJ + |FΦk |2∂Φk
∂Φ̄k

KĪJ − |FΦk |2∂Φ̄k
KĪL∂Φk

KM̄JKLM̄ , (7)

where K denotes the Kähler potential, KĪJ denotes second derivatives by fields, i.e. KĪJ =
∂Ī∂JK and K ĪJ is its inverse. The invariance under the ∆(54) flavor symmetry as well as the
gauge invariance requires the following form of the Kähler potential of lI and eI (I = e, µ, τ)

K = Z(L)(Z)
∑

I=e,µ,τ

|lI |2 + Z(R)(Z)
∑

I=e,µ,τ

|eI |2, (8)



at the lowest level, where Z(L)(Z) and Z(R)(Z) are arbitrary functions of the singlet fields Z.
Both matrices are proportional to the (3 × 3) identity matrix. This form would be obvious
because (le, lµ, lτ ) and (ec, µc, τ c) are ∆(54) triplets. At any rate, it is the prediction of our
model that three families of left-handed and right-handed masses are degenerate.

Let us estimate corrections including χiχk as well as χiχ
∗
k for i, k = 1, 2, 3, 4, 5, 6. The ∆(54)

flavor symmetric invariance allows only the terms such as χiχ
∗
k for i, k = 4, 5, 6 to appear in

off-diagonal entries of the Kähler metric of (le, lµ, lτ ). When we take into account the corrections
from χiχ

∗
k for i, k = 4, 5, 6 to the Kähler potential, the soft scalar masses squared for left-handed

charged sleptons have the following corrections,

(m2
L̃
)IJ = m2

L

 1 + O(α̃2) O(α2
4) O(α2

4)
O(α2

4) 1 + O(α̃2) O(α2
4)

O(α2
4) O(α2

4) 1 + O(α̃2)

 ,

(m2
R̃
)IJ = m2

R

 1 + O(α̃2) O(α2
4) O(α2

4)
O(α2

4) 1 + O(α̃2) O(α2
4)

O(α2
4) O(α2

4) 1 + O(α̃2)

 ,

(9)

where α̃ is the averaged value of α1−6. These deviations may not be important for direct mea-
surement of slepton masses. However, the off-diagonal entries in the SCKM basis are constrained
by the FCNC experiments. Our model predicts

(∆LL)12 =
(m2

L)(SCKM)
12

(m2
L)11

= O(α2
4), (∆RR)12 =

(m2
R)(SCKM)

12

(m2
R)11

= O(α2
4). (10)

Recall that the diagonalizing matrices of left-handed and right-handed fermions are almost the
identity matrix. The µ → eγ experiments constrain these values as (∆LL,RR)12 ≤ O(10−3), when
mL,R = 100 GeV. On the other hand, the parameter space in the numerical result corresponds to
α4 ≤ 10−2 and leads to (∆LL,RR)12 ≤ O(10−4). Thus, our parameter region would be favorable
also from the viewpoint of the FCNC constraints.
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