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The loop correction to the annihilation cross section of weakly interacting massive particle
(WIMP) is possible to be enhanced if the intermediate particle is lighter than WIMP mass.
We present a formula with which we can include that one-loop effect easily in the calculation
of relic abundance.

1 Introduction

Weakly interacting massive particle (WIMP) χ is a good candidate for dark matter. In order to
calculate the relic abundance of WIMP, the cross section of WIMP annihilation is required. If a
boson ϕ mediates annihilating WIMPs, the cross section can be enhanced. In particular, when
the mass of the intermediate particle mϕ is much smaller than WIMP mass mχ (i.e. mϕ ≪ mχ),
the loop correction to the annihilation cross section is enhanced as large as tree level cross
section, therefore the loop corrections of all orders should be included in the calculation 2. Even
if the intermediate particle is lighter than WIMP mass (mϕ . mχ), the correction is still possible
to be enhanced, though it is smaller than the correction in the case of mϕ ≪ mχ. In that case,
we can treat the correction perturbative, thus including one-loop correction is sufficient. In
this work we calculate the one-loop correction to the WIMP annihilation amplitude and cross
section. We also calculate the thermally averaged one-loop correction in order to apply our
results to the calculation of relic density.

2 Correction to the WIMP Annihilation

Let us consider the WIMP annihilation χ(p1) + χ(p2) → X1(p′1) + X2(p′2), where X1,2 and p
in parentheses are possible final states and momentum of particles, respectively. Fig.1 shows
a generic WIMP annihilation in tree level. We are interested in one-loop amplitude shown in
Fig.2, in which a boson ϕ mediates two annihilating particles. In these figures, gray circles
represent common structure for both of diagrams.

Afterward, we adopt the center of mass (COM) frame and follow the reference3. We perform
the calculation in the case of Majorana fermion, however, our results in the non-relativistic limit
can be used in the Dirac fermion and scalar WIMPs. We take parameters P = (p1 + p2)/2 =
(p′1 + p′2)/2, p = (p1 − p2)/2 and p′ = (p′1 − p′2)/2. The one-loop corrected amplitude is written
as

AL(|p⃗|, p′) = AL,0(|p⃗|, p′) + δAL(|p⃗|, p′) (1)

where L is the partial wave, L = 0(1) for S (P)-wave. Notice that the amplitude is a function
of p⃗, since in COM frame, P0 =

√
p⃗2 + m2

χ, P⃗ = 0 and p0 = 0 are satisfied.

The one-loop correction is represented with the tree level contribution Ã0,L, which is shown
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Figure 1: WIMP annihilation in tree-level. Figure 2: One-loop correction to Fig.1.

as gray circles in Fig.1, 2. The correction for the amplitude in case of scalar boson exchange is

δAL(|p⃗|, p′) = ig2v̄(p2)
∫

d4q

(2π)4
q/ − P/ + mχ

(q − P )2 − m2
χ + iϵ

(γ5)nL
q/ + P/ + mχ

(q + P )2 − m2
χ + iϵ

× 1
(p − q)2 − µ2 + iϵ

Ã0,L(|p⃗|, p′)u(p1). (2)

Here g is the strength of the coupling between the boson ϕ and two WIMPs χ, and v̄ and u
are spinors, and nL = 0(1) for S (P)-wave. The fraction in Eq.(2) is rewritten with Λ±(q⃗) =
ω±(γ0γ⃗·q⃗+γ0mχ)

2ω where ω2 = q⃗2 + m2
χ, as

q/ + P/ + mχ

(q + P )2 − m2
χ + iϵ

=
(

Λ+(q⃗)
q0 + P0 − ω + iϵ

+
Λ−(q⃗)

q0 + P0 + ω + iϵ

)
γ0. (3)

Another similar fraction can be also rewritten with Λ±(q⃗). After integrating on q0 and taking
the non-relativistic limit, Eq.(2) becomes

δAL(|p⃗|, p′) = ig2v̄(p2)
∫

d3q

(2π)3
Λ−(q⃗)

2(ω − P0)
γ0(γ5)nLΛ+(q⃗)γ0 −1

(p⃗ − q⃗)2 + µ2
Ã0,L(p′)u(p1)

= g2v̄(p2)
∫

d3q

(2π)3
(q/ − P/ + mχ)(γ5)nL(q/ + P/ + mχ)

8ω2(ω − P0) ((p⃗ − q⃗)2 + µ2)
Ã0,L(p′)u(p1). (4)

In the first line, we took only the residue at q0 = ω − P0, since it becomes largest among other
terms in the non-relativistic limit. After Performing the integration about angular variables,
the corrections to the amplitude are represented with the integration about |q⃗|. The integral
variable |q⃗| can be replaced to x = |q⃗|/|p⃗|. Now the correction is represented as a function of a
parameter r = µ2/p⃗2, as

δAL(|p⃗|, p′) =
g2

4π2

1
v
A0(|p⃗|, p′)IL(r) (5)

IS(r) = ℜe

[∫ ∞

0
dx

x

x2 − 1
ln

(1 + x)2 + r

(1 − x)2 + r

]
(6)

IP (r) = ℜe

[∫ ∞

0
dx

2x2

x2 − 1

(
−1 +

x2 + 1 + r

4x
ln

(1 + x)2 + r

(1 − x)2 + r

)]
. (7)

Here, v represents the relative velocity of WIMP in COM frame, such as |p⃗| = mχv/2. In Fig.3,
I(r) for S- and P-waves are shown. The correction for S-wave is always larger than that for
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Figure 3: Integrals I(r) for S- and P-waves.

0.01 0.1 1 10
µ/mχ

0.01

0.1

1

δJ
L
 / 

(g
2 J L

)

L = 0 (S-wave)

L = 1 (P-wave)

Figure 4: Correction to annihilation integrals δJL com-
pared to the tree level contribution.

P-wave. We approximate the integral I(r) for small and large r as

IS(r) ≅


2π√
r+1

(
1 − 1

r+2

)
(large r)

π2/2

1+
√

r
π

+ r
π2

(small r)

IP (r) ≅


2π

3
√

r+1

(
1 + 1.3

r+1

)
(large r)

π2/2

1+ 3
√

r
π

+ r
π

(small r)
.

3 Correction to the Relic Abundance

To obtain the accurate relic abundance of WIMP, we must solve the Boltzmann equation. Its
solution is approximated very well as

Ωχh2 =
8.5 × 10−11xF GeV−2√

g∗(xF )J(xF )
(8)

where Ωχ is the energy density of WIMP in the unit of critical density, h is the scaled Hubble
parameter, xF = mχ/TF (TF is the freeze-out temperature), g∗ is the number of freedom, and
J(xF ) is the annihilation integral which is defined as

J(xF ) =
∫ ∞

xF

dx
〈σv〉
x2

. (9)

Here 〈σv〉 is the thermal averaged cross section

〈σv〉 =
2x3/2

√
π

∫ ∞

0
dv σv

v2

4
e−xv2/4. (10)

Since the freeze-out occurs when WIMP is the non-relativistic particle, it gives a good
approximation to expand the tree-level averaged cross section with x

〈σ0v〉(x) ≅ A +
6B

x
+ · · · . (11)



In this expansion, A contains only the S-wave contribution and B contains both S- and P-waves
contributions. However, we suppose that B contains only P-wave contribution for simplicity.
Notice that this simplification does not make the accuracy of the calculation so much since the
loop correction itself is smaller than the tree level cross section for µ . mχ.

Let us expand the one-loop corrected annihilation cross section as well as the annihilation
amplitude with the tree-level and one-loop contributions σL = σ0,L + δσL. Then, the one-loop
contribution δσL is represented with the integration in Eq.(7)

δσL =
g2

2π2v
IS(r)σ0,L (12)

With Eq.(9), Eq.(10), Eq.(11) and Eq.(12), the one-loop corrected annihilation integrals can
be calculated as a function of zF = (2µ/mχ)

√
xF , as

δJS(xf ) =
g2A

π5/2

µ

mχ

∫ ∞

zF

dz

z2

(
1

aSz2 + bSz + cS
+ dS

)
,

δJP (xf ) =
64g2B

π5/2

(
µ

mχ

)3 ∫ ∞

zF

dz

z4

[
exp(−aP z + bP ) +

1
cP z + dP

]
. (13)

Here, parameters aS , bS , cS , dS and aP , bP , cP , dP are fitted by numerical calculation:

aS = 0.000593; bS = 0.03417; cS = 0.1015; dS = 0.1182
aP = 0.318; bP = 0.1226; cP = 0.3309; dP = 0.6306.

Notice that Eq.(13) can be calculated only if we know the parameters in tree level, A and B.
In Fig.4, the one-loop correction to the annihilation integral δJL compared to the strength

of the coupling times the tree level annihilation integral g2JL. The upper (lower) curves are for
xF = mχ/TF = 25 (20). As easily expected, the corrections becomes large as µ/mχ becomes
small. In the massless limit (i.e. µ/mχ → 0), correction for the S-wave becomes as large as tree
level contribution.

4 Conclusion and Discussion

We study the one-loop correction to the WIMP annihilation cross section, in which a massive
(i.e. mϕ . mχ) boson mediates the annihilating WIMPs. In order to apply the result to the
calculation of WIMP abundance, we also formulate the one-loop correction to the annihilation
integral JL in Eq.(13). With the tree-level annihilation cross section (i.e. A and B), we can
include the one-loop effect which can be large in the calculation of relic density. Notice that
even if we have only the exact annihilation cross section (not expanded by x), we can obtain
parameters A and B by solving simultaneous equations using exact cross sections with slightly
different x.

We also performed the calculation of the one-loop correction of neutralino annihilation in
the minimal supersymmetric standard model (MSSM)1. In that case, the correction is up a few
percent of the tree-level contribution because of small strength of the coupling.
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