SEARCHING FOR DARK MATTER WITH ICECUBE

Sven Lafebre Pennsylvania State University

Rencontres de Moriond March 2010

AMUNDSEN-SCOTT STATION

THE ICECUBE OBSERVATORY

IceCube

- Cubic km detector volume
- 1450-2450 m depth
- 125 m string spacing
- 17 m sensor spacing

DeepCore

- 70 m string spacing
- 7 m sensor spacing

IceTop

Surface cosmic ray detector

DIGITAL OPTICAL MODULE

Photomultiplier

• 10" Hamamatsu 18% quantum eff. at 400 nm

Digitizers

- ATWD

 3 gain channels

 300 MHz sampling

 400 ns recording time
- ADC
 40 MHz sampling
 6.4 ms recording time

DETECTION PRINCIPLE

- Neutrinos interact in or near detector
- Tracks from charged-current ν_{μ} interactions: km scale
- Cascades from other interactions (neutral-current, v_e , v_τ):
 10 m scale
- Detect Cherenkov radiation

NEUTRINO SIGNATURES

Tracks

- Through-going muons
- 1° pointing resolution

Cascades

- Neutral current
- Charged current v_e , v_τ
- 10% resolution in log(energy)

Composites

- Starting tracks, double bangs
- Good directional and energy resolution

POINTING RESOLUTION

POINTING RESOLUTION

BACKGROUND & FILTERING

- Atmospheric muons from above
- Atmospheric neutrinos from all directions

Simulated muon fluxes

SCIENCE OVERVIEW

Diffuse and point source searches active galactic nuclei, supernovae, gamma ray bursts, dark matter

Use 'background' as signal cosmic rays & atmospheric neutrinos

Exotic and other phenomena monopoles, supersymmetry & glaciology

HOW TO LOOK FOR DARK MATTER

- Dark matter amasses in heavy objects (Sun, Galactic Center)
- Look for neutrinos produced in selfannihilation (GeV–TeV scale)

$$\chi\chi \rightarrow 1\bar{1} \rightarrow \nu_{\mu}$$
 $\chi\chi \rightarrow q\bar{q} \rightarrow \nu_{\mu}$
 $\chi\chi \rightarrow W^{\pm}, Z, H \rightarrow \nu_{\mu}$
 $\chi\chi \rightarrow \nu_{\mu}$

Filtering steps:

- Initial trigger
- Quality cut at South Pole
- Angular cuts
- Track reconstruction quality cut
- Advanced cuts:

 log likelihood,
 decision trees,
 support vector machines

Passing rates, 22 strings

- IceCube 22: 104.3 days
 AMANDA: 150.4 days
- Blind analysis hide Sun azimuth
- Select zenith 90°–120°

 Sun below horizon
- Remove muon background
- 20% signal efficiency
- ~4° angular resolution

OBSERVED FLUX IS CONSISTENT WITH BACKGROUND EXPECTATIONS

- Muon flux limit
 probes spin dependent
 neutralino-proton
 cross-section
- Dependent on models of dark matter density distribution and annihilation modes
- Hard: W⁺W⁻
 Soft: bb̄

PRL 102, 201302 (2009)

PRL 102, 201302 (2009)

Kaluza-Klein dark matter

- 5 universal space-time dimensions
- Lightest KK particle (LKP) mass is 0.3–1.0 TeV
- In equilibrium in the Sun
- Annihilate to standardmodel particles
- Result uses same dataset as 'traditional' wimp search

SEE ARXIV:0910.4480, PRD ACCEPTED

WIMPS IN THE GALAXY

- Galactic Halo extends below horizon
- Compare equal areas on-source and off-source
- Measure flux difference,
 pick models, and constrain
 self-annihilation cross-section

$$\frac{d\Phi}{dE} = \frac{1}{2} \langle \sigma_{A} \nu \rangle J(\psi) \frac{R_{\odot} \rho_{\odot}^{2}}{4\pi m_{\chi}^{2}} \frac{dN}{dE}$$

WIMPS IN THE GALAXY

- 90% confidence exclusion limit
- Width derives from various density models

SEE ARXIV:0912.5183

CONCLUSION

- Construction ends next year
- 79 strings in the ice;
 taking data starting April 1
- 22-string analyses limit spindependent cross-sections

- 40-string analyses are underway
- 59-string data available soon
- DeepCore boosts wimp sensitivity below 100 GeV

THANK YOU

U. Alabama, Tuscaloosa
U. Alaska, Anchorage
U.C. Berkeley
Clark-Atlanta U.
U. Delaware/Bartol Inst.
Georgia Tech
U.C. Irvine
U. of Kansas
Lawrence Berkeley Nat. Lab
U. of Maryland
Ohio State U.
Pennsylvania State U.
Southern U., Baton Rouge
U. of Wisconsin-Madison
U. of Wisconsin-River Falls

U. of Canterbury, Christchurch

Chiba U.

The IceCube Collaboration

36 INSTITUTIONS ★ ~250 PHYSICISTS