The Next-to-Minimal Supersymmetric Standard Model

U. Ellwanger, LPT Orsay

Why Supersymmetry?

The origin of the electroweak scale $M_{weak} \sim 100$ GeV

- the only explicit mass scale in the Standard Model –
 could also be explained by
- new strong interactions at ~ 1 TeV
- compact extra dimensions
- in Susy: $M_{weak} \sim$ Susy breaking scale M_{Susy} = scale of masses of Higgs bosons, squarks, sleptons, gauginos
- ONLY with Susy: the ratios of the 3 gauge couplings are explained by simple (SU(5), SO(10)) Grand Unification at a reasonable scale $10^{16} \text{GeV} < M_{GUT} < 10^{17} \text{GeV}!$

The Higgs sector in supersymmetric extensions of the

Standard Model

At least two SU(2) doublets H_u , H_d :

 H_u couples to up-type quarks

 H_d couples to down-type quarks and leptons

Soft Susy breaking mass terms $m_{H_u}^2$, $m_{H_d}^2$ (with $m_{H_u}^2 < 0$ naturally through radiative corrections, if $m_{top} > 60$ GeV) trigger $\left\langle H_u^0 \right\rangle$, $\left\langle H_d^0 \right\rangle \neq 0$

Physical states (- Goldstone bosons):

- 2 CP-even neutral scalars h, H
- 1 CP-odd neutral scalar A
- 1 charged scalar H^{\pm}
- 4 neutralinos, 2 charginos

One linear combination of h, H (typically h) couples to the gauge bosons similar to the Standard Model Higgs boson

Masses and couplings depend on undetermined parameters like $m_{H_u}^2$, $m_{H_d}^2 \longleftrightarrow \tan\beta = \frac{\langle H_u^0 \rangle}{\langle H_d^0 \rangle}$, m_A , squark masses (via rad. corrs.), ...

For $m_A\gg M_Z$: the extra Higgs states H, A and H^\pm form a (nearly degenerate) SU(2) multiplet of mass $\sim m_A$

However:

- The lightest CP-even scalar h has a mass below \sim 135 GeV
- Its detection at the LHC is guaranteed within \sim 3 years in one or the other production/decay mode (if an integrated luminosity of 30 fb^{-1} and a c.m. energy of 14 TeV are achieved):

"No-loose Theorem"

Note: a light Higgs $(m_h \lesssim 120 \text{ GeV})$ is <u>not</u> easier to detect at the LHC!

Why extend the Higgs sector of the MSSM?

- the charged fermionic superpartners of $H_{u,d}$ mix with the charged SU(2) gauginos to form two (Dirac-) charginos
- LEP II: the lightest chargino is heavier than 103 GeV
- \rightarrow a (supersymmetric) mass term $|\mu| \gtrsim 100$ GeV for the higgsinos is necessary (this is not a Susy breaking parameter!)
- \rightarrow spoils a nice relation: $M_{weak} \sim M_{Susy}$ with M_{Susy} as the <u>only</u> dimensionful parameter (below the Planck/GUT scale)
- \rightarrow " μ -problem": why is a supersymmetric mass term of the order of the Susy breaking scale (Kim, Nilles)?
- \rightarrow generate (supersymmetric) higgsino masses via a Yukawa coupling to a field S with $\langle S \rangle \neq 0$ (the first Susy/Sugra models by Fayet, Sakai, Witten, Nilles,... included such a gauge singlet superfield)
- → this is the Next-to-Minimal Supersymmetric Standard Model (NMSSM); gauge coupling unification is preserved!

Superpotential of the NMSSM:

$$W_{MSSM} = \mu H_u H_d + \dots \longrightarrow W_{NMSSM} = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \dots$$
 (scale inv.)

Hence:
$$\mu \psi_u \psi_d + \dots \longrightarrow \lambda S \psi_u \psi_d + \dots$$

 $\langle S \rangle \neq$ 0 easy to achieve with the help of a negative Susy breaking mass term (and/or a trilinear self coupling) for $S \longrightarrow \langle S \rangle \sim M_{Susy}$

$$\rightarrow \mu_{\rm eff} = \lambda \langle S \rangle \sim M_{Susy}$$
 automatically \checkmark

Physical states:

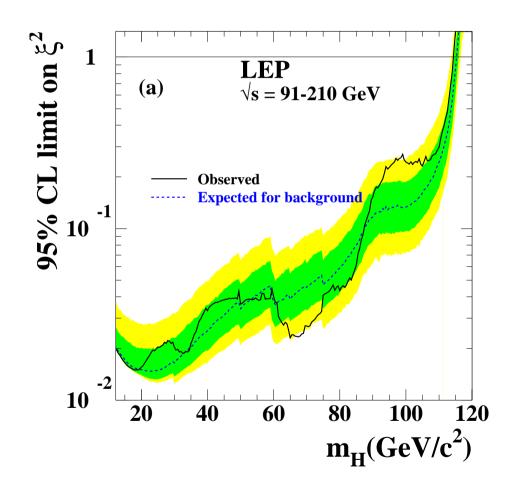
- 3 CP-even neutral scalars H_i
- 2 CP-odd neutral scalars A_i
- 1 charged scalar H^{\pm}
- 5 neutralinos, 2 charginos

This does not necessarily simplify the detection of at least one Higgs boson!

- more (5 instead of 2) undetermined parameters in the Higgs sector; in some regions of parameter space (small λ), the NMSSM will be very difficult to distinguish from the MSSM. In other regions of parameter space, important phenomenological differences can appear:
- 1) the SM-like CP-even scalar can be \sim 15 GeV heavier than in the MSSM
- 2) the singlet-like CP-even scalar can mix with the SM-like CP-even scalar, and have a mass below 114 GeV (allowed by LEP!)
- 3) the singlet-like CP-odd scalar A_1 can be light \longrightarrow the SM-like CP-even scalar h can decay dominantly as $h \to A_1A_1 \to 4b, \ 2b2\tau, \ 4\tau\dots$ depending on M_{A_1}

→ LEP constraints easier to satisfy

Lessons/Hints from LEP


Search for $H \to b\bar{b}$, $\tau^+\tau^-$ (comb. 4 exp., LEP-Higgs Working Group):

Light excess of events for $m_H \sim 95-100$ GeV $(\sim 2.3\,\sigma)$ If such an H exists, it must possess:

 \rightarrow Either a reduced coupling $g_{HZZ}/g_{HZZ_SM} \equiv \xi \ \lesssim 0.4 - 0.5$

 \rightarrow or a reduced BR to $b\bar{b}$: $BR(H \rightarrow b\bar{b})/BR_{SM} \lesssim 0.2$

 \rightarrow $BR(H \rightarrow A_1A_1) \sim 80 - 90\%$? (Dermisek, Gunion: solution of the "little finetuning problem" of the MSSM)

Search for $H \rightarrow A_1A_1$ at LEP:

- ightarrow Strong bounds on $H
 ightarrow A_1 A_1
 ightarrow 4b$ for $m_H \sim 95-100$ GeV (OPAL, DELPHI)
- $\longrightarrow M_{A_1}$ below $B\bar{B}$ threshold: $M_{A_1} < 2M_B \sim 10.5$ GeV
- \longrightarrow A_1 decays dominantly into $A_1 \rightarrow \tau^+ \tau^-$
- \rightarrow Searches for $H \rightarrow A_1A_1 \rightarrow 4\tau$: (preliminary) bounds from ALEPH for $m_H \sim 95-100$ GeV; Dermisek, Gunion: still OK if $BR(A_1 \rightarrow \tau^+\tau^-) \sim 80\%$ (small tan β)

Constraints from Υ -decays (and CDF on $A_1 \to \mu^+\mu^-$): $M_{A_1} \gtrsim 9$ GeV, or $A_1 b\bar{b}$ - coupling small (see the talk by F. Domingo)

For dominant $H \to A_1A_1 \to 4\tau$: Higgs search at the LHC will be difficult!

- 4 neutrinos (at least), no narrow peaks in invariant masses;
- 2 τ 's (of the same A_1) nearly collinear, low invariant masses, low p_T ;
- Backgrounds: ↑ production, heavy flavour jets, . . .

Forshaw et al. (0712.3510): via diffractive Higgs Production $pp \to pp + H$ (\to additional forward proton detectors at ATLAS and/or CMS) Belyaev et al. (0805.3505, 1002.1956): via $A_1A_1 \to 4\tau \to 2\mu + 2$ jets, or $A_1A_1 \to 4\tau \to 4\mu$

Or: use subdominant A_1 decays:

 $BR(A_1 \to \mu^+ \mu^-) \sim 3 \cdot 10^{-3}$ would be clean $(BR(A_1 \to \gamma \gamma) \lesssim 10^{-4}$ would be too low) Lisanti, Wacker (0903.1377): $A_1A_1 \to 2\tau + 2\mu$ from H via gg fusion

Current ATLAS studies: $A_1A_1 \rightarrow 4\tau \rightarrow 4\mu$ (VBF) Current CMS studies: $A_1A_1 \rightarrow 4\tau \rightarrow 2\mu + 2$ jets (HS)

Due to the extended neutralino sector of the NMSSM:

The LSP can be the additional singlino-like neutralino $\chi_1^0 \sim \chi_S$ (weakly mixed with the bino,...)

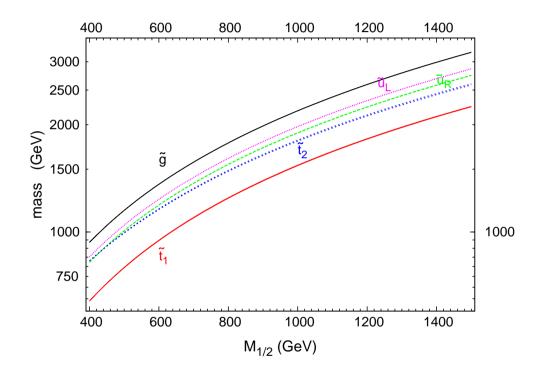
cNMSSM: Universal soft Susy breaking scalar masses m_0 + trilinear couplings A_0 + gaugino masses $M_{1/2}$ at the GUT/Planck scale, as in minimal supergravity (A. Djouadi, U.E., A. Teixeira)

- \rightarrow the LSP is always the singlino-like neutralino, with a mass just a few GeV below the NLSP = stau $\tilde{\tau}$ (\rightarrow good relic density due to co-annihilation with the stau)
- $\longrightarrow m_0 \sim$ 0, $A_0 \sim -\frac{1}{4} M_{1/2}$, essentially 1 undetermined parameter $M_{1/2}$

Possibly: A singlet-like CP-even Higgs scalar with a mass \sim 100 GeV (recall the "bump" at LEP...)

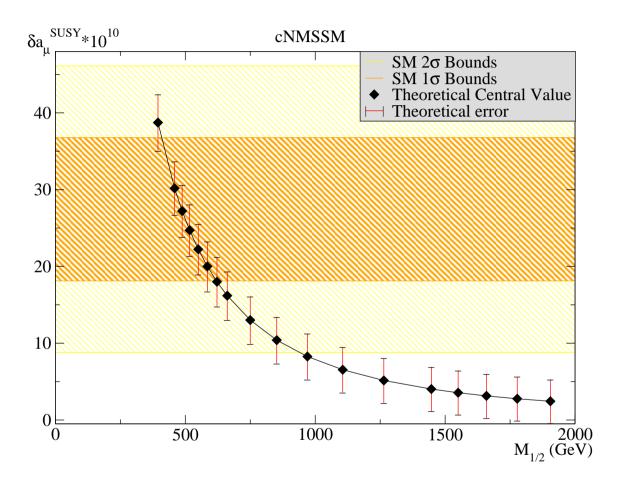
Implications for sparticle searches at the LHC:

Typical squark decay cascades:


$$\tilde{q} \rightarrow q + \chi_2^0(\text{bino}) \rightarrow q + \tau + \tilde{\tau} \rightarrow q + \tau + \tau + \chi_1^0(\text{singlino})$$

 \rightarrow Mostly 2 τ 's per squark decay cascade (one hard, one soft)!

But: The last decay $\tilde{\tau} \to \tau + \chi_1^0$ may take a while (since $m_{\tilde{\tau}} - m_{\chi_1^0} \lesssim$ a few GeV from Ω_{DM} on top of a small coupling)


→ possibly displaced vertices from stau decays (mm - cm)!

Squark and gluino masses as function of $M_{1/2}\,$

- → gluino heavier than squarks,
- \rightarrow for $M_{1/2} \gtrsim$ 500 GeV: no conflict with any sparticle searches (or B-physics, Higgs searches at LEP, ...)

Muon anomalous magnetic moment:

Require a Susy contribution to the anomalous magnetic moment of the muon, in order to explain the present 3σ discrepancy in the SM (U. E., F. Domingo) $\longrightarrow M_{1/2} \lesssim 1$ TeV (\sim 500 GeV?)

Visible at the LHC?

```
For M_{1/2} \sim 500 GeV: M_{gluino} \sim 1.2 TeV, M_{squarks} \sim 1 TeV
```

- \rightarrow no signal (\sim 10 events/ fb^{-1}) at 7 TeV c.m. energy
- \rightarrow only $\sim 1000 \text{ events}/fb^{-1}$ at 14 TeV c.m. energy
- \rightarrow Dedicated cuts (with T. Plehn, preliminary): 2 jets with $p_T > 300/150$ GeV, $E_T(miss) > 200$ GeV, require a hadronically decaying τ with $p_T(visible remnants) > 40$ GeV (Further standard cuts on $\Delta \phi(\text{jets-}E_T(miss))$, M_T)

Assume a au acceptance of \sim 30 - 40%

- \rightarrow Signal acceptance: $\gtrsim 10\%~(\gtrsim 100~\text{events}/fb^{-1})$
- \longrightarrow Background acceptance $(t\bar{t})$: $\sim 10^{-5}~(\sim 8~\text{events}/fb^{-1})$

→ Looks promising!

(Difference w.r.t. stau-coannihilation-region of the cMSSM: harder spectrum of $p_T(\tau)$, since mostly 2 hard τ 's per event)

Conclusions

- the NMSSM can be considered as the most natural supersymmetric extension of the Standard Model: no μ -problem, scale invariant superpotential, $M_{weak} \simeq M_{Susy}$
- Larger parameter space, constraints from LEP easier to satisfy: either heavier h, or $h \to A_1A_1$; difficult for the LHC: studies are under way, but no "No-loose-theorem" at present \to "No Higgs" at the LHC can be a signal of the NMSSM!
- Case of a singlino-like LSP (like in the cNMSSM): important effects on sparticle searches:
 - \sim 4 τ 's per Susy event
 - possibly displaced vertices from stau-decays!