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Going Higgsless
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hep-ph/0305237, hep-ph/0308038
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Precision Electroweak

hep-ph/0308036 hep-ph/0203034
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Precision Electroweak

Cacciapaglia, Csaki, Grojean JT hep-ph/0409126

TeVPlanck

S just right

http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Cacciapaglia%2C%20Giacomo%22
http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Cacciapaglia%2C%20Giacomo%22
http://www-library.desy.de/spires/find/hepnames/wwwhist?lab.id=INSPIRE-00075131
http://www-library.desy.de/spires/find/hepnames/wwwhist?lab.id=INSPIRE-00075131
http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Grojean%2C%20Christophe%22
http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Grojean%2C%20Christophe%22
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Why Build the LHC?
WW Scattering Amplitude

H→bb̄H→bb̄

Re(A0)

E (GeV)

SM without Higgs

500 1000 1500 2000

0.1

0.2

0.3

0.4

0.5



Why Build the LHC?
WW Scattering Amplitude

H→bb̄H→bb̄

Re(A0)

E (GeV)

SM without Higgs

500 1000 1500 2000

0.1

0.2

0.3

0.4

0.5

“Higgsless” with
Resonances



Why Build the LHC?
WW Scattering Amplitude

H→bb̄H→bb̄

Re(A0)

E (GeV)

SM without Higgs

500 1000 1500 2000

0.1

0.2

0.3

0.4

0.5

“Higgsless” with
Resonances

too heavy, 
too late



LHC Signal

Birkedal, Matchev, Perelstein hep-ph/0412278



Drell-Yan

Sanz, Martin hep-ph/0907.3931

Dilepton Z �−like resonances have been studied extensively in a number of different sce-

narios [76–81], however they have been overlooked as a discovery possibility in mass-matched

models
¶
. In Ref. [82], mass-matching was assumed to suppress the Drell-Yan signal to the

point that vector-boson-fusion and associated production of KK gauge bosons were the pre-

ferred discovery modes. In 4D discrete models of mass-matching, so-called ‘ideally delocalized’

models [50,52,83], the SM-fermion - neutral KK gauge boson coupling is more strongly sup-

pressed than in the 5D models, so the Drell-Yan production of neutral resonances is essentially

zero. Drell-Yan neutral resonance production in Higgsless-style models has been investigated

in [84–86], however the mass-matched scenario has several distinct features which we point

out here.

For the same signal point as above, we generate the signal for pp→ ZKK,i → �−�+
, where

the i indicates we sum over all kinematically allowed neutral KK states. As usual, � = e, µ.

After applying minimum cut of 500 GeV on the invariant mass of two same-flavor, opposite-

sign leptons, the only significant Standard Model background is pp → Z0/γ∗ → �+�−. The

large invariant mass cut, along with pT cuts for the two leptons, pT > 200 GeV, |η| < 2.5

suppress the background to the point that the signal is easily visible. The invariant mass of

the lepton pair for the signal and background are shown below in Fig. 14.
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Figure 14: Neutral resonance reconstruction in the dilepton channel. The solid curve is the signal and

background, generated together to maintain any interference between them, while the shaded region

is the background alone. A breakdown of the analysis is given in Appendix (B). Left: overview in

the 500-1300 GeV range. Center: close-up to the two lightest ZKK . Right: close-up into the heaviest

resonance. Notice the vertical scale in the rightmost plot is logarithmic and the luminosity is five

times higher than in the other two plots.

There are several features of Fig. 14 which are different from other Z �
searches. First,

although the signal is clearly visible at low luminosity, the coupling gffZKK is substantially

¶Some preliminary work on this channel was presented in a talk given by Giacomo Cacciapaglia and Guido

Marandella at the Budapest meeting.
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Gaugephobic Signal

Galloway, McElrath, McRaven, JT hep-ph/0908.0532

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0  100  200  300  400  500  600  700  800  900  1000

d
!

 /
 d

E
 (

p
b

 /
 G

eV
)

E!+ (GeV)

SM
GpHM

pp→W (2) →W+ h→ µ+ ν b b̄

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0  100  200  300  400  500  600  700  800  900  1000

SM

GpHM



Back to 4D



Magnetic Monopoles

magnetic hypercharge

electric hypercharge

a fourth generation with
magnetic charges?

Csaki, Shirman JT hep-ph/1003.0448, hep-ph/1003.????

http://www-library.desy.de/spires/find/hepnames/wwwhist?lab.id=INSPIRE-00075131
http://www-library.desy.de/spires/find/hepnames/wwwhist?lab.id=INSPIRE-00075131
http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Grojean%2C%20Christophe%22
http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Grojean%2C%20Christophe%22


Seiberg-Witten

massless fermionic monopoles

hep-th/9407087
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Conclusions

Even though the SM Higgs 
search would fail,

Higgsless Models have
interesting LHC signatures

models with monopoles
have spectacular signatures


