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The T2K (Tokai-to-Kamioka) experiment

 Search for nm ne (ne appearance)

 Precise measurement of nm nx (nm disappearance)

Tokai

Kamioka 295 km

Super-K(*2)

50-kt water cherenkov

*1 Japan Proton Accelerator Research Complex     *2 The Super-KAMIOKANDE detector. See Yamada-san’s talk

J-PARC(*1)

30-GeV 750-kW proton beam

2.5˚

TokaiKamioka
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T2K collaboration

12 countries (Canada, France, Germany, Italy, Japan, 
Korea, Poland, Russia, Spain, Switzerland, UK, USA)

~500 collaborators from 62 institutions
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Neutrino oscillation
Neutrino changes its flavor while propagating in vacuum/matter.

 Neutrinos have masses = Evidence for physics beyond the Std. Model.
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Mass hierarchy (m1 < m2 < m3 or m3 < m1 < m2)?

Size of the mixing angle 13?

Size of the CP phase ? … Ability to measure CP violation depends on sin13.

 Important to measure 13.

Solar & reactor
Atmospheric 
& accelerator Reactor & accelerator

23 = 37˚ ~ 45˚
Dm23

2 ≈ 2.4 x 10–3 eV2

12 ≈ 34.4˚±1.3˚
Dm12

2 ≈ 8 x 10–5 eV2

13 < 10˚ by CHOOZ
222
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Concept of T2K
 Probability of nm nx (23, Dm23

2)

 Probability of nm ne (13)

CC-QE(*) events to measure En

Off-axis beam configuration

Adjust En to ones around 
the oscillation max.

Reduce high energy ns’ B.G. from non CC-QE.

High statistics

J-PARC + Super-K + off-axis beam

Expected event rate in Super-K:

~700 CC interactions (for 750 kW x 107 sec)

Far-to-near flux extrapolation
Measure n flux, energy and flavor both at 
the near (ND280) and the far (Super-K) detectors.
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Measurement of nm nx
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R(Far/Near)
Extrapolation by MC 
which is experimentally 
verified by NA61(*)

Accurate prediction of Nn
null is important to measure 23 and Dm32

2 precisely.

Nn
null = R x Fn

ND x sn
water Uncertainty is reduced by

• ND280 for Fn
ND and sn

water

• Beam monitoring for R

* See Nicolas’ talk

P(nm nx)

sin22 = 1.0
Dm2 = 2.7 x 10–3 eV2

sin22

Dm2
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0 m ~280 m 295 km

Target ND280 Super-K

Fn
ND

Measurement by ND280

(8.3 x 1021 POT @ 30 GeV)

Nn
obs

Measurement by Super-K



Search for nm ne
ne signal

1-ring e-like event (CC-QE)

Background

Beam ne contamination
(~0.4% of nm at nm spectrum peak energy)

Mis-reconstructed NC(*1) p0 event(*2)

(mainly from high E ns  reduced by the off-axis beam)
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p0

CC-QE mis-PID 
probability: ~1%

*1 NC: Neutral Current    *2 See Joshua’s talk

nm

N N

nm

p0 g
g

sin2213 0.1 0.01

Signal 143 14

Beam ne BG 16 16

BG from nm 10 10

Expected num. of events
in 0.35-0.85 GeV

(sin2213 < 0.13 by CHOOZ)

m
Super-K 
event 
display

Sharp edge

e
Fussy ring

Nn
obs

Measurement by Super-K



T2K sensitivity
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30 GeV, 8.3 x 1021 POT,  CP = 0

(sin2223) ≈ 0.01, (Dm23
2) < 10–4 eV2

M.Diwan, Venice, Mar.2009

> 10 times

CHOOZ 
excluded

0.0060 @ Dm23
2 = 2.4 x 10–3 eV2

(for a 10% sys. error)



T2K neutrino beam
High power beam

Beam loss has to be held as low as possible.

Shift of the proton beam on the target makes  
a shift of the n beam direction.

 Necessary to tune and monitor
the proton beam.

Off-axis beam configuration
En spectrum peak shifts according to              
the n beam direction (DEpeak = 2%/mrad).

 Necessary to tune and monitor the n
beam direction precisely (w/in 1 mrad).

9

p

nm

m
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2.5˚
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0 118 m ~280 m

Beam 
dump m monitor INGRID

Top view (n beamline)

INGRID
ND280

Beam dump
m monitor

Target & horns

Slope: ~40

Side view



Beam commissioning
Purpose

Check all components (the magnets, beam monitors, horns, DAQ, etc.) 
work as expected.

Tune the proton beam orbit and the pos./size at the target.

Tune the n beam direction by the muon monitor and INGRID.

Establish operation of the n detectors (ND280 and Super-K).

 ne appearance search started.
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Construction Beam 
commissioning

Horn 2, 3 
installation
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Beam 
commissioning

ne search

1st horn only Full horn setup

~1 kW ~20 kW ~100 kW

On-axis detector (INGRID)

Super-K

Off-axis detector (ND280)
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Proton beam monitors

Proton beam orbit was tuned by using the proton beam monitors.

Deviation of the orbit from the beam line is less than 1 mm.

The beam loss is enough small.

Proton beam hits the center of the target.

11

CT (intensity) x 5 ESM (position) x 21 SSEM (profile) x 19 OTR (position & 
profile) @ target

Beam loss monitor x 50

Horizontal beam orbit

Before tuning

After tuning

MR extraction Target

OTR x = –0.5 mm
±1 mm



Muon monitor
Monitor the neutrino beam flux and direction on a shot-by-shot basis by 
measuring the muon profile.

Measures ionization yield by muons at each sensor to reconstruct the profile.

Beam direction is a direction from the target to the profile center.

m beam

7 x 7 Si PIN 
photodiodes

7 x 7 ionization 
chambers
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Silicon x slice

Required precision of the profile center:
Better than 11.8 cm (= 1 mrad)  3 cm

• No time dependent drift.
• Further beam tuning was ongoing at this time.

Muon monitor measures the beam direction 
stably w/ a precision much better than 1 mrad.

Silicon PIN photodiodes

±
1

 m
ra

d

25 min.

RMS 2.9 mm

RMS 1.8 mm



Neutrino beam monitor (INGRID)
Monitor the neutrino beam flux and direction w/ ~1-day statistics by 
measuring the on-axis neutrino profile.

Counts neutrino (CC-QE) events in each module to reconstruct the profile.
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7 + 7 modules Required precision of the profile center:
Better than 28.0 cm (= 1 mrad)  5 cm

Horizontal modules

Inc. n events out-
side  the modules

n events inside 
the modules

Event rate of each module for 7.3 x 1015 POT

Dec. 25, 2009Fe + scintillator

1 m

n
m

p like

1st event (Nov. 22, 2009)

Side view



Neutrino event in ND280
Measure Fn

ND and sn

P0D: p0 Detector  NC p0 rate

TPC: Time Projection Chamber  PID (dE/dx)

Magnetic field 0.2 T pl
FGD: Fine Grain Detector  l

ECAL: Electromagnetic CALorimeter

SMRD: Side Muon Range Detector
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UA1 magnet 
yoke & SMRD

ECALs TPCs FGDs

Magnet 
coils

P0D

3.5 m

3
.6

 m

01:57 JST, Feb. 5, 2010

P0D

TPC1 TPC2 TPC3

FGD1 FGD2 DSECAL

n beam

Magnet on (0.188 T)

Detected the neutrino event w/ the full setup.
Calibration of the detectors is ongoing.

n beam



T2K 1st neutrino event in Super-K
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06:00 JST, Feb. 24, 2010

1st ring

2nd ring

3rd ring

[ 1st ring + 2nd ring ]
Invariant mass: 133.8 MeV/c2

(close to p0 mass)
Momentum: 148.3 MeV/c



Summary
Neutrino oscillation is physics beyond the Std. Model.

The T2K long baseline neutrino oscillation experiment 
started searching for the ne appearance.

The beam commissioning succeeded;
all the components are working as expected.

The beam direction can be measured precisely by 
the muon monitor.

The beam line parameters have been fixed.

100 kW x 107 sec data will be accumulated in 2010.

First physics result is expected around summer 
2010.
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Supplement

18



J-PARC
Jul. 16, 2009

LINAC
RCS

Main Ring

TS

ND280

Super-K

Muon monitor
Beam dump
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Near detectors (ND280)
Measure n beam energy spectrum, flux, flavor and interaction x-
sec before the n oscillation.

Fine Grain Detectors (FGDs) measure neutrino vertices.
Scintillator bars (FGD1), scintillator bars + water (FGD2)

TPCs measure pm to reconstruct En spectrum and dE/dx for particle ID.
MicroMegas w/ Ar/iC4H10/CF4 (95/2/3) gas mixture

Side Muon Range Detector 
(SMRD) measures the range of m.

Scintillator planes btw the yokes

p0 detector (P0D) measures the 
rate of NC-p0 production.

Scintillator bars + lead foil/water

ECALs measure electrons from 
FGD and g-rays from p0. 

Scintillator bars + lead foil

UA1 magnet 
yoke & SMRD

ECALs TPCs FGDs

Magnet 
coils

P0D

3.5 m

3
.6

 m

Extrapolate the n energy 
spectrum and flux to Super-K.
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1st neutrino event in ND280

P0D (TPC1) TPC2 TPC3

FGD1 FGD2

07:40 JST, Dec. 19, 2009

DSECAL

TPC1 was not taking data

n beam

Interaction inside P0D, with tracks through all central detectors.

21

Magnet off



Super-KAMIOKANDE detector
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50-kton water Cherenkov detector (fiducial volume: 22.5 kt).

~11,000 20-inch PMTs (inner detector).

Good e-like (shower ring) / μ-like separation. CC-QE mis-PID probability: ~1%

sE ~ 80 MeV (~10%) limited by Fermi motion, δEscale ~ 2%.

New electronics & DAQ has been stably running since summer 2008.

 Improvement of decay-e tagging efficiency.

Real-time transfer of T2K beam 
spill information.

→ Trigger of T2K event.

Inelastic

CC-QE

s ~ 80 MeV



Sensitivity to Dm23 and 23
30 GeV, 8.3 x 1021 POT

(sin2223) ≈ 0.01, (Dm23
2) < 10–4 eV2

M.Diwan, Venice, Mar.2009
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Sensitivity to Dm23 and 23
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100 kW x 1 x 107 sec
C

o
u

n
ts

 /
 1

0
0

 M
eV

En
rec (GeV)

Null oscillation case

Oscillation case
sin2223 = 1.0
Dm23

2 = 2.4 x 10–3 eV2

 (sin2223) ≈ 0.1, (Dm23
2) ≈ 4 x 10–4 eV2 (90% CL)

(Statistical error only)



T2K sensitivity to 13 30 GeV, 8.3 x 1021 POT
CP = 0

25

0.0060 @ Dm23
2 = 2.4 x 10–3 eV2

(for a 10% sys. error)

> 10 times

CHOOZ 
excluded



T2K sensitivity to 13 30 GeV, 8.3 x 1021 POT
Dm23

2 = 2.4 x 10–3 eV2
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T2K sensitivity to 13
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Seek for the neutrino CP-violation
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2

21 mm DD

Atmospheric

Solar

CPV

CP-violating

CP-conserving

Interference

GF: Fermi coupling constant    Ne: electron number density

For nm ne,  – and x –x. P(nm ne) ≠ P(nm ne).
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