Results of the Search for
Ultra High-Energy
Neutrinos with ANITA-II

Abby Goodhue Vieregg

UCLA

March 12, 2010

(ANITA-II Launch Day in Antarctica)

ANITA Collaboration

University of California, Irvine

Ohio State University

University of Kansas

Washington University in St. Louis

University of Delaware

University of Minnesota

University of California, Los Angeles

University of Hawaii at Manoa

National Taiwan University

University College London

Jet Propulsion Laboratory

Stanford Linear Accelerator Center

Neutrinos: Ideal UHE Messengers

- Travel virtually unattenuated through the universe
- Point back to sources
 - Highest energy observation of extragalactic sources
 - Study very distant sources
- GZK Production: Cosmic ray protons (E> 10^{19.5} eV) interact with CMB photons

Neutrino Cross Section

 Weak interaction at E_{CM} not accessible to LHC: 200 TeV

- L_{int}~250 km
 - Use Earth-shielding as cross-section analyzer

Detection Principle: The Askaryan Effect

- EM shower in ice → moving negative charge excess
- Coherent radio Cherenkov radiation (P ~ N²)

The ANITA Concept

- Neutrino signal characteristics:
 - Fast impulse
 - Vertically polarized
- Ice is radio transparent
- Large detection volume (1000 km³*str)

ANITA-I Results

Vertical Polarization (neutrino search)

Expected Background

Observed Events

1

1

Horizontal Polarization (cosmic rays)

Expected Background

Observed Events

2

16

- Radio Synchrotron emission of CR air showers seen!
- Direction of geo-magnetic field determines polarization direction (F = qv x B)
 - → Mostly Hpol in Antarctica
- CR Energy: order 10¹⁹ eV, work in progress

The ANITA-II Instrument

Improvements for ANITA-II:

- Lower Energy Threshold (x 3 events)
 - → Reduce front-end amplifier temp (20%)
 - → Improve trigger efficiency (30%)
 - → 8 more antennas (30%)
- Increased Exposure (x 2 events)
 - → Directional trigger masking (30%)
 - → Better flight path & more livetime (x 2)

Total improvement: > 5 in neutrino event rate

200-1200 MHz antennas

ANITA-II Flight

31 day flight

Launched: Dec 21st 2008

27M events

Ground Calibration

-200

20

40

100

Time (ns)

~115,000 Calibration impulses from a remote field site during flight.

Critical for analysis!

(R. Nichol)

Pointing Events to the Ground

Making an Interferometric Image:

- calculate cross-correlation of antenna waveforms
- use timing delay given by direction
- sum over the whole payload

Blind Analysis Plan

- 2 methods of blinding
 - Hidden signal box
 - Event insertion
- Set cuts on sidebands
- Estimate background and efficiency
- Open hidden box, remove inserted events
- Separate HPol (cosmic rays) from VPol (neutrinos)

Lots of Man-Made & Thermal Noise

Separation from Man-Made Events

300k events pass thermal cuts

Cluster with:

- Other events
- Known bases of activity
- "Hot-Spots"
- Neutrinos are single, isolated events!

→ Estimate man-made background using cluster multiplicities

Unblinding

Cut requirement	Passed		Efficiency
	Vpol	Hpol	
Hardware-Triggered	$\sim 26.7 M$		-
(1) Quality Events	$\sim 21.2M$		1.00
(2) Reconstructed Events	320,722		0.96
(3) Isolated Singles	2	3	0.64
Total Efficiency			0.61
Neutrino Bin Cosmic Ray Bin			
		Ana	alysis Efficiency
Background Estimate (Thermal + Man-made):			
 V Pol (neutrino): 0.97 +/- 0.39 events 			
H Pol (cosmic ray): 0.57 +/-			

Candidate Events

Cosmic Ray Sky Map

Neutrino Candidates

New Limit on the UHE Neutrino Flux

- 2 events on a background of 0.97 +/- 0.39
- (Feldman-Cousins 90% CL)

Summary

- 2 Neutrino Candidates on a background of 0.97 +/- 0.39
- 3 cosmic ray events seen
- Set new constraints on flux of UHE neutrinos
- On the edge of seeing neutrinos?
 - → ANITA-III will find out!

Separation from Thermal Noise

- 99% of triggers are thermal noise
- Main cut: peak value of the interferometric image and waveform envelope
- Allow 0.5 background events (from 21M triggers)

