Searching for the Higgs in 10 year-old LEP data

Kyle Cranmer,

New York University
arXiv:1003.0705

The Higgs after LEP

In the years since LEP ended, the indirect constraints on the Higgs from EW precision measurements has provided some guidance and consternation

- fits prefer light Higgs mass, below the region excluded by direct searches
- In addition, some attention drawn to the excess around 98 GeV
- eg. consistency with NMSSM: R. Dermisek and J. F. Gunion Phys.Rev.D73:111701,2006.

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?
- No, the Hbb coupling is quite small. It doesn't take much for a new decay mode to dominate the bb mode.

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?
- No, the Hbb coupling is quite small. It doesn't take much for a new decay mode to dominate the bb mode.
- would the existing analyses have seen it?

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?
- No, the Hbb coupling is quite small. It doesn't take much for a new decay mode to dominate the bb mode.
- would the existing analyses have seen it?
- it depends: in some existing searches may still be sensitive

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?
- No, the Hbb coupling is quite small. It doesn't take much for a new decay mode to dominate the bb mode.
- would the existing analyses have seen it?
- it depends: in some existing searches may still be sensitive
- but there is no easy and accurate way to determine the efficiency of existing analyses to alternative models

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?
- No, the Hbb coupling is quite small. It doesn't take much for a new decay mode to dominate the $b b$ mode.
- would the existing analyses have seen it?
- it depends: in some existing searches may still be sensitive
- but there is no easy and accurate way to determine the efficiency of existing analyses to alternative models

A prime example is next-to-minimal MSSM, where a is naturally light.

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?
- No, the Hbb coupling is quite small. It doesn't take much for a new decay mode to dominate the bb mode.
- would the existing analyses have seen it?
- it depends: in some existing searches may still be sensitive
- but there is no easy and accurate way to determine the efficiency of existing analyses to alternative models

A prime example is next-to-minimal MSSM, where a is naturally light.

- allows for $h \rightarrow a a$, where a is pseudoscalar (mixture of A from MSSM)

How could we have missed the Higgs?

If the Higgs exists and is light, how could we have missed it at LEP?

- if the production cross-section were smaller than expected
- this has direct implications on how the Higgs couples to the Z and its role in electroweak symmetry breaking
- or if it decayed into something exotic that the standard analysis missed
- Is that difficult to achieve?
- No, the Hbb coupling is quite small. It doesn't take much for a new decay mode to dominate the $b b$ mode.
- would the existing analyses have seen it?
- it depends: in some existing searches may still be sensitive
- but there is no easy and accurate way to determine the efficiency of existing analyses to alternative models

A prime example is next-to-minimal MSSM, where a is naturally light.

- allows for $h \rightarrow a a$, where a is pseudoscalar (mixture of A from MSSM)
- if $m_{a}<2 m_{b}$ evades $4 b$ searches and expect $a \rightarrow \tau^{+} \tau^{-}$

OPAL low A-mass search (a parable)

OPAL also carried out a searches in the region $2 m_{\tau}<m_{a}<2 m_{b}$

Search for a low mass CP-odd Higgs
 boson in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions with the
 OPAL detector at LEP2

6.2 MSSM no-mixing scenario interpretation

We scan the region with $2 \leq m_{\mathrm{A}} \leq 11 \mathrm{GeV} / c^{2}$ and $45 \mathrm{GeV} / c^{2} \leq m_{\mathrm{h}} \leq 85 \mathrm{GeV} / c^{2}$ in
 the m_{A} versus m_{h} plane for the MSSM benchmark parameter scenario. The maximum theoretically allowed value for m_{h} in this scenario is $85 \mathrm{GeV} / c^{2}$ [6]. The scan procedure

Eur. Phys. J. C27 (2003) 483-495, [hep-ex/0209068].

95% CL in the m_{A} versus m_{h} plane for the MSSM no-mixing benchmark

OPAL low A-mass search (a parable)

OPAL also carried out a searches in the region $2 m_{\tau}<m_{a}<2 m_{b}$

Search for a low mass CP-odd Higgs
 boson in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions with the
 OPAL detector at LEP2

6.2 MSSM no-mixing scenario interpretation

We scan the region with $2 \leq m_{\mathrm{A}} \leq 11 \mathrm{GeV} / c^{2}$ and $45 \mathrm{GeV} / c^{2} \leq m_{\mathrm{h}} \leq 85 \mathrm{GeV} / c^{2}$ in
 the m_{A} versus m_{h} plane for the MSSM benchmark parameter scenario. The maximum theoretically allowed value for m_{h} in this scenario is $85 \mathrm{GeV} / c^{2}$ [6]. The scan procedure

Eur.Phys.J.C47:547-587,2006

Going back to LEP data

After several years of requests, we went back ALEPH's LEP2 data

- this was not totally unrelated to the LHC incident
- a bit of archeology to get access to data \& analysis framework running

$E_{\mathrm{CM}}(\mathrm{GeV})$	183	189	192	196	200	202	205	207
$\int \mathcal{L} d t\left(\mathrm{pb}^{-1}\right)$	56.82	174.21	28.93	79.83	86.30	41.90	81.41	133.21

Simulated signal event $\quad e^{+} e^{-} \rightarrow Z H \rightarrow 2 e 4 \tau$

2 back-to-back electrons clearly distinguished from 2 back-to-back jets. not much else in the event (about 50 GeV of missing energy from tau decays)

The h is produced nearly at rest, thus the $h \rightarrow a a$ are nearly back-to-back

On each side, $a \rightarrow \tau^{+} \tau^{-}$leads to a well collimated jet from the decay products of two taus with mass $<m_{a}$, which were clustered with JADE algorithm (requiring $\mathrm{m}<15 \mathrm{GeV}$)

Standard tau algorithms will not be efficient for highly collinear $a \rightarrow \tau^{+} \tau^{-}$

- but the jet has a characteristic multiplicity corresponding to 1 -prong and 3 -prong branching ratios of the taus
- expect 2,4 , or 6 tracks in each jet
- conversions lead to some spillage
- require jets to be well-contained so tracking efficiency is stable and high
Only use track multiplicity as di-tau jet discriminator (ie. leptonic \& hadronic decays)

These channels are significantly cleaner due to the clear Z peak, but the signal rate is very low and signal efficiency is precious

- use standard ALEPH lepton ID
- include isolated photon as part of Z-system when invariant mass is brought closer to the world average (more severe for electron channel)
- electron channel suffers from Bhabha background: 2 good electrons which produce brehmsstrahlung photons that convert to give 2 track "jets"
- note, in OPAL analysis, the had a requirement on Evis. Makes sense for a -> jets, but it is not efficient for the tau channel, so we dropped it.
- we make no attempt to reconstruct individual taus, we only use presence of two low-mass jets and then use track multiplicity as a descriminant
Loose selection (used as last chance to compare data \& MC):
- 2 oppositely charged, isolated leptons, 2 jets, with $\left|\cos \theta_{j}\right|<0.9\left|\cos \theta_{j l}^{m i n}\right|<0.95$ Final selection: $\quad \nexists>20 \mathrm{GeV} \quad \cos \theta_{j j}<-0.5 \quad 80<M_{\ell^{+} \ell^{-}(\gamma)}<102 \quad n_{1,2}^{t r k}=2$ or 4

@ loose selection	data	background
$Z>e+e-$	299	332
$Z>\mu+\mu-$	83	75

This channel drives the analysis because of the larger Z branching ratio

- it is also the most difficult, because you don't have a clean $Z \rightarrow l l$

Loose selection requires:

- exactly 2 jets with at least 2 tracks and

$$
n_{1}^{t r k}=2 \text { or } 4 \quad E_{j_{1}}>25 \mathrm{GeV} \notin>30 \mathrm{GeV} \not h>20 \mathrm{GeV} / c^{2},\left|\cos \theta_{j}\right|<0.85 \quad m_{j j}>10 \mathrm{GeV}
$$

- to reject " 2 photon" and beam background events $E_{v i s}>5 \% E_{C M} \cos \theta_{\text {miss }}<0.9$

@ loose selection	data	background
$Z>v v$	206	200

Final selection also required:

- less than 5 GeV in within 30° of beam axis; $n_{1,2}^{t r k}=2$ or 4
- consistency with $Z \rightarrow \nu \bar{\nu}$: $\neq 60 \mathrm{GeV}$ and $\not \subset>90 \mathrm{GeV} / c^{2}$.
- and small aplanarity (<0.05) consistent with 2 back-to-back highly collimated jets
- signal has higher aplanarity for high m_{a} and low m_{h} : cut chosen to maintain efficiency

Expected yield and efficiency

Our signal efficiency is pretty good, but very few events in lepton channels

- but we also have <0.1 expected background in $Z \rightarrow l l$ channels
- expect 6 background events in $Z \rightarrow \nu \bar{\nu}$ channel

Backing up to the loose selection, we see good agreement between data and MC

- Estimate systematics from tracking, jet energy scale, energy deposits in forward region (beam halo), etc.
- 5% uncertainty on signal efficiency; 10\% for background in lepton channels; 30\% for neutrino channel
- data/MC consistent well within this range... statistical errors dominate

What did we see?

What did we see?

Limits based on event counts in 3 track multiplicity bins $X 3 Z$ decay channels

- weak dependence on m_{a} and improved sensitivity over previous limits

$$
\xi^{2}=\frac{\sigma \operatorname{BR}(h \rightarrow a a) \operatorname{BR}(a \rightarrow \tau \tau)^{2}}{\sigma_{S M}}
$$

Limits based on event counts in 3 track multiplicity bins $X 3 Z$ decay channels

- weak dependence on m_{a} and improved sensitivity over previous limits

$$
\xi^{2}=\frac{\sigma \operatorname{BR}(h \rightarrow a a) \operatorname{BR}(a \rightarrow \tau \tau)^{2}}{\sigma_{S M}}
$$

New limits

Limits based on event counts in 3 track multiplicity bins $X 3 Z$ decay channels

- weak dependence on m_{a} and improved sensitivity over previous limits

$$
\xi^{2}=\frac{\sigma \mathrm{BR}(h \rightarrow a a) \mathrm{BR}(a \rightarrow \tau \tau)^{2}}{\sigma_{S M}}
$$

New limits

Limits based on event counts in 3 track multiplicity bins $X 3 Z$ decay channels

- weak dependence on m_{a} and improved sensitivity over previous limits

$$
\xi^{2}=\frac{\sigma \mathrm{BR}(h \rightarrow a a) \mathrm{BR}(a \rightarrow \tau \tau)^{2}}{\sigma_{S M}}
$$

After a little bit of archeology, we have resurrected the ALEPH analysis engine (including the ability to produce Monte Carlo signal and simulate events in the ALEPH detector)

- allows us to close the few remaining holes in LEP Higgs searches

Our first analysis of $e^{+} e^{-} \rightarrow Z h \rightarrow(e e, \mu \mu, \nu \nu) 4 \tau$ had discovery sensitivity, but we saw no excess. The new limits:

- extend and improve the limits from the OPAL analysis
- exclude most of the "ideal" NMSSM Higgs scenarios, except for those at low $\tan \beta \approx 2$, where there is a larger $\operatorname{BR}(a \rightarrow c \bar{c}, g g)$

These new results published in arXiv:1003.0705 (submitted to JHEP)

- we may follow up with other analyses to close remaining holes

Many thanks to Itay Yavin, James Beacham, Neal Weiner, Riccardo Barbieri, and others that pushed this along

Backups

Tracking: silicon + large time projection chamber (~31 hits)

$$
\frac{\Delta 1 / p_{T}}{1 / p_{T}}=\left(6 \cdot 10^{-4} \oplus 5 \cdot 10^{-3} / p_{T}\right)
$$

ECAL: lead + proportional wire chambers, 22X0

$$
\frac{\Delta E}{E}=0.18 / \sqrt{E}
$$

HCAL: 23 layers of iron yolk + streamer tubes

$$
\frac{\Delta E}{E}=0.85 / \sqrt{E}
$$

muons identified via HCAL
+2 muon chambers

Detector simulation based on Geant 3, analysis based on 10 year old fortran framework

Numbers of events in different track multiplicity bins

Table 3: Number of events passing loose and final selections in each channel, in data, simulated background, and simulated signal $\left(m_{\mathrm{h}}=100, m_{\mathrm{a}}=4 \mathrm{GeV} / c^{2}\right)$. The numbers of events passing the final selection are categorised by track multiplicity.

Channel	Selection	data	total	background category				signal
	$\left(n_{1}^{\text {track }}, n_{2}^{\text {track }}\right)$		background	2 f	4 f	$\gamma \gamma$	$\mathrm{n} \gamma$	
$\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$	Loose	299	332	183	137	12.31	0.65	2.27
	$(2,2)$	0	0.034	0.034	0.000	0.000	0.000	0.689
	$(2,4)+(4,2)$	0	0.055	0.014	0.005	0.037	0.000	0.610
	$(4,4)$	0	0.031	0.019	0.013	0.000	0.000	0.126
$\mathrm{Z} \rightarrow \mu^{+} \mu^{-}$	Loose	83	74.50	12.79	60.64	1.07	0.00	2.37
	$(2,2)$	0	0.058	0.005	0.053	0.000	0.000	0.800
	$(2,4)+(4,2)$	0	0.005	0.000	0.005	0.000	0.000	0.676
	$(2,2)$	0	0.006	0.000	0.006	0.000	0.000	0.127
$\mathrm{Z} \rightarrow \nu \bar{\nu}$	Loose	206	200	135	47.97	13.50	3.74	12.63
	$(2,2)$	0	1.312	0.663	0.408	0.240	0.000	5.097
	$(2,4)+(4,2)$	0	1.948	0.528	0.575	0.845	0.000	4.741
	$(4,4)$	2	2.569	0.461	0.820	1.288	0.000	1.089

$$
P\left(N_{m, f} \mid \xi^{2}, b_{m, f}\right)=\prod_{m \in \mathcal{M}} \prod_{f \in\{e e, \mu \mu, \nu \nu\}} \operatorname{Pois}\left(N_{m, f} \mid \xi^{2} s_{m, f}+b_{m, f}\right) \cdot N\left(b_{m, f}^{M C} \mid b_{m, f}, \Delta_{f}\right)
$$

Two particularly important processes for these searches are 4 fermion and 2 photon processes

$4 f$ Four fermion events compatible with $W W$ final states are generated using KoralW 1.51 [69], with quarks fragmented into parton showers and hadronized using either PYTHIA 6.1 [38]. Events with final states incompatible with $W W$ production but compatible with $Z Z$ production are generated with KoralZ
$2 p h$ Two-photon interaction processes, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} X$, are generated with the РНОТО2 generator [70]. When X is a pair of leptons, a QED calculation is used with preselection cuts to preferentially generate events that mimic $W W$ production. When X is a multi-hadronic state, a modified version of PYTHIA is used to generate events with the incident beam electron and positron scattered at $\theta<12^{\circ}$ and $168^{\circ}<\theta$, respectively. Events in which the beam electron or positron is scattered through an angle of more than 12° are generated using HERWIG 6.2 [39].

After decades of running in a very clean environment, and tuning Monte Carlo to data the description of standard model processes in ALEPH is excellent.

$\mathrm{q} \overline{\mathrm{q}}$ The process $e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow q \bar{q}(\gamma)$ is modeled using KK 4.14 [67], with initial state radiation from KK and final state radiation from PYTHIA.
$e^{+} e^{-}$Bhabha scattering and $e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}(\gamma)$ is modeled using BHWIDE 1.01 [68].
$\mu^{+} \mu^{-}$Pair production of muons, $e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}(\gamma)$, is calculated using KK 4.14 [67], including initial and final state radiative corrections and their interference.
$\tau^{+} \tau^{-}$Pair production of taus, $e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow \tau^{+} \tau^{-}(\gamma)$, is calculated using KK 4.14 [67], including initial and final state radiative corrections and their interference.

1ph Single photon production, $e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow \nu \bar{\nu}(\gamma)$, is included in the background estimate.

Nph Multiphoton production, $e^{+} e^{-} \rightarrow n \gamma$, with $n \geq 2$, is included in the background estimate.

Choice of jet algorithms

At LEP, the dominant jet algorithms were DURHAM and JADE.

- both are iterative recombination type algorithms: merge if $m_{i j}^{2} / E_{t o t}^{2}<y_{c u t}$
- Ycut is an adjustable parameter and Etot was often chosen to be the visible energy in the event
- Often (as in the case of the OPAL analysis), events were "forced into N jets", eg. the algorithm scanned ycut until the event had exactly N jets.
- Then that value of ycut would be used as a discriminating variable together with the jet's mass.
- DURHAM defines $m_{i j}^{2}$ in a way that is more robust to soft radiation, which is good if you are interested in bona fide hadronic showers.
- But we are looking for a purely electroweak decay, so the straight invariant mass combination of JADE is more natural.
- Furthermore, we know that we are interested in $m_{a}<15 \mathrm{GeV}$ which leads to an obvious choice for y cut if we use a fixed $E_{\text {tot. }}$

By choosing this approach our s/b was significantly higher than forcing to two jets with DURHAM and cutting on the jet mass

- Additionally we have track multiplicity in jets as a handle

Higgs primarily produced via higgsstrahlung process

- kinematic threshold for production $\sim 115 \mathrm{GeV}$
- in that mass range, standard model Higgs decays dominated by $H \rightarrow b b, \tau \tau$

Many (most) MSSM Higgs searches were recycled versions of SM searches
M. Spira Fortsch. Phys. 46 (1998)

Other motivations for a light a

The searches above were done with a 2 higgs doublet model in mind

- the same search is also sensitive to a wide range of theories with extended Higgs sectors
- probably the most useful prototype is the next-to-minimal SSM, in which the MSSM is extended with an additional singlet \hat{S} [Gunion, et al]
- the scalar part naturally acquires a vev. and can provide a dynamical explanation for the size of the μ term.
- this gives rise to a (mostly singlet) CP-odd scalar boson a
- approximate accidental symmetries (à la Peccei-Quinn or when trilinear couplings vanish) can give a mechanism to make the a light

Here we are taking a model independent attitude, and just look for a signal like $h \rightarrow a a \rightarrow 2 \tau 2 \tau$ where the \mathbf{a} is light, without interpreting it in the context of any particular model

- eg. place limit on:

$$
\xi^{2}=\frac{\sigma \mathrm{BR}(h \rightarrow a a) \mathrm{BR}(a \rightarrow \tau \tau)^{2}}{\sigma_{S M}}
$$

low tan beta have reduced BR(a->tau tau)

Figure 7: $B\left(a \rightarrow \tau^{+} \tau^{-}\right)$for various $\tan \beta$ values.

Dermisek and Gunion consider status of NMSSM after this result

New constraints on a light CP-odd Higgs boson and related NMSSM Ideal Higgs Scenarios.

[^0]Keywords: Higgs, NMSSM, BaBar, ALEPH.

> This analysis may be sensitive to other physics processes we have not considered.

For what it's worth: Our goal was not to just set a limit... certainly not a mediocre one. We saw we had discovery sensitivity early on, so we really went for a discovery.

- since the analysis was blind, we really didn't know

Blind analysis

Because the LEP data is old and it is not possible to confirm anything with "next year's data", we had to be quite careful

- remember, we're shooting for a discovery!
- no one would believe a signal if we adjusted our cuts looking at data
- Also, we don't want to spoil the other analyses that we might be interested in: $a \rightarrow$ jets, $\mu, .$.
But we do need to verify that our Monte Carlo is describing the data well.
- So we did a blind blind analysis and defined 5 control samples

1. exclude $m_{l l}$ around M_{Z}, that kills our signal, but otherwise similar
2. Select events if \#tracks<2 for each jet (kills $\tau \tau, \mu \mu, q \bar{q}, g g$)
3. in $Z \rightarrow l l$ exclude events with $M\left(j_{1}, j_{2}\right.$, invisible $)>60 \mathrm{GeV}$
4. in $Z \rightarrow \nu \nu$ exclude events with missing mass $>80 \mathrm{GeV}$
5. exclude events with \#track>6 in both jets (to remove taus) AND if di-jet mass > 60 (to avoid seeing $h \rightarrow a a \rightarrow q \bar{q}, g g$ if it exists)

Blind analysis

Because the LEP data is old and it is not possible to confirm anything with "next year's data", we had to be quite careful

- remember, we're shooting for a discovery!
- no one would believe a signal if we adjusted our cuts looking at data
- Also, we don't want to spoil the other analyses that we might be interested in: $a \rightarrow$ jets, $\mu, .$.
But we do need to verify that our Monte Carlo is describing the data well.
- So we did a blind blind analysis and defined 5 control samples 1. exclude $m_{l l}$ around M_{Z}, that kills our signal, but otherwise similar

2. Select events if \#tracks<2 for each jet (kills $\tau \tau, \mu \mu, q \bar{q}, g g$)
3. in $Z \rightarrow l l$ exclude events with $M\left(j_{1}, j_{2}\right.$, invisible $)>60 \mathrm{GeV}$

"Unboxing" celebration

For what it's worth: Our goal was not to just set a limit... certainly not a mediocre one. We saw we had discovery sensitivity early on, so we really went for a discovery.

- since the analysis was blind, we really didn't know

Oct. 9, 2009
Champaign
(to be consumed regardless of result)

Searches for the Standard Model Higgs put a limit at $\mathrm{M}_{\mathrm{H}}>114.4 \mathrm{GeV}$

- SM searches dominated by $H \rightarrow b b, \tau \tau$ Searches for neutral Higgs bosons in the MSSM also quite stringent
- $\mathrm{m}_{\mathrm{h}}, \mathrm{m}_{\mathrm{A}}<93$ for $0.5<\tan \beta<2.5$ in " m_{h}-max" scenario

Decay independent based on Z recoil place a lower limit at 82 GeV

- other decay topologies, flavor independent analyses, etc. were considered.

$\mathrm{m}_{\mathrm{H}}\left(\mathrm{GeV} / \mathbf{c}^{2}\right)$

LEP Higgs limits in H1, H2 plane

Search for Neutral MSSM Higgs Bosons at LEP

ALEPH, DELPHI, L3 and OPAL Collaborations The LEP Working Group for Higgs Boson Searches ${ }^{1}$

(factor x SM cross section that corresponds to 95% exclusion)

Here we see that Higgs bosons produced via Higgsstrahlung decaying to 4b are highly constrained

- 4τ are less constrained with a notable hole for $m_{h}>85 \mathrm{GeV}, 2 m_{\tau}<m_{a}<10 \mathrm{GeV}$

Similar Searches at the LHC

Searches for similar Higgs scenarios have been considered

- hadronic taus have significant QCD background, focus is on events with 2 or more muons (from tau decays)
- Lots of backgrounds; challenging search for the LHC Event Topology

A New Search Strategy:

Goal: Fill some gaps in discovery potential

- Restrict to $\tau \rightarrow \mu \nu v$ decays
- no problems with isolation
- 2 high pt forward jets $(O(\mathrm{~W}, \mathrm{Z}$ mass $)) \rightarrow$ apply $\mathrm{Pt}>20 \mathrm{GeV}$ cut
- No activity in the central region, only Higgs decay products are detected. \rightarrow QCD BG suppressed
- By focusing on $4 \tau \rightarrow h \mu h \mu$, we find signals where taujet- μ are very near to each other.
- Intensive study on reconstructed taujet is required \rightarrow New TauID Algorithm
- Isolation of Muon need to be redefined.
\rightarrow New Muon Isolation Definition

- Typical $\mathrm{Xsec} \sim 3 \mathrm{fb} \Rightarrow 90$ signal events with $30 \mathrm{fb}^{-1}$
K. S. Khaw, J. Ianaka, S. Asaı, I. Kobayashı

1. RottIander
2.

Promotionskolloquium
University of Tokyo, ICEPP

Search for NMSSM Higgs bosons in the $h \rightarrow a a \rightarrow \mu \mu \mu \mu, \mu \mu \tau \tau$ channels using $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

FIG. 3: The expected and observed limits and ± 1 s.d. and ± 2 s.d. expected limit bands for $\sigma(p \bar{p} \rightarrow h+X) \times \mathrm{BR}(h \rightarrow a a)$, for (a) $M_{h}=100 \mathrm{GeV}$ and (b) $M_{a}=4 \mathrm{GeV}$. The signal for $\operatorname{BR}(h \rightarrow a a)=1$ is shown by the solid line. The region $M_{h}<86 \mathrm{GeV}$ is excluded by LEP.

M_{a}	$=$$\sigma \times \mathrm{BR}$ (GeV)
0.2143	$[\mathrm{exp}] \mathrm{obs}(\mathrm{fb})$
0.3	$[10.0] 10.0$
0.5	$[7.5] 9.5$
1	$[6.1] 6.1$
3	$[5.6] 5.6$

Sample	$\sigma \times 2 \times \mathrm{BR}$
Data	
$M_{a}=3.6 \mathrm{GeV}$	$[23.8] 19.1 \mathrm{fb}$
$M_{a}=4 \mathrm{GeV}$	$[23.9] 45.9 \mathrm{fb}$
$M_{a}=7 \mathrm{GeV}$	$[25.0] 24.6 \mathrm{fb}$
$M_{a}=10 \mathrm{GeV}$	$[24.7] 27.3 \mathrm{fb}$
$M_{a}=19 \mathrm{GeV}$	$[30.0] 33.7 \mathrm{fb}$

Andy Haas and company collaborated with Wacker and Lisanti to look for these signatures at the Tevatron

Discovering the Higgs with Low Mass Muon Pairs

Mariangela Lisanti and Jay G. Wacker ${ }^{1}$

${ }^{1}$ SLAC, Stanford University, Menlo Park, CA 94025
Physics Department, Stanford University, Stanford, CA 94305 (Dated: March 8, 2009)

These searches are probing $\sim 1 \%$ of the expected production cross-section.

- there are not enough signal events at LEP to compete

However, the 4τ signature is significantly more difficult at hadron colliders than at LEP, due to QCD backgrounds.

Constraints from CLEO/BaBar

$$
\mathcal{L}_{a f \bar{f}} \equiv i C_{a f \bar{f}} \frac{i g_{2} m_{f} \bar{f} \bar{f} \gamma_{5} f a, ~ . ~}{2 m_{W}}
$$

Summary of similar LEP searches

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathcal{H}_{2} \mathrm{Z} \rightarrow\left(\mathcal{H}_{1} \mathcal{H}_{1}\right) \mathrm{Z} \rightarrow(\ldots)(\ldots)$			$m_{\mathcal{H}_{2}}$	$m_{\mathcal{H}_{1}}$	
(any)(q̄)	91	16.2	12-70	<0.21	[46]
$\left(\mathrm{V}^{0} \mathrm{~V}^{0}\right)$ (any but $\tau^{+} \tau^{-}$)	91	9.7	0.5-55	<0.21	[46]
$(\gamma \gamma)($ any $)$	91	12.5	0.5-60	<0.21	[46]
(4 prongs)(any)	91	12.9	0.5-60	0.21-10	[46]
(hadrons) $(\nu \bar{\nu})$	91	15.1	1-60	0.21-30	[46]
$\left(\tau^{+} \tau^{-} \tau^{+} \tau^{-}\right)(\nu \bar{\nu})$	91	15.1	9-73	3.5-12	[46]
(any) ($\mathrm{q} \overline{\mathrm{q}}, \nu \bar{\nu}$)	161,172	20.0	$40-70$	20-35	[40]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}})(\mathrm{q} \overline{\mathrm{q}})$	183	54.0	45-85	$12-40$	[41]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b}, \mathrm{b} \overline{\mathrm{b}} c \overline{\mathrm{c}}, \mathrm{cc} c \bar{c})(\mathrm{q} \overline{\mathrm{q}})$	192-208	452.4	30-105	12-50	$[43,44]$
$(\mathrm{c} \overline{\mathrm{c}} \mathrm{c} \overline{\mathrm{c}})(\mathrm{q} \overline{\mathrm{q}})$	192-208	452.4	10-105	4-12	[47]
$\left(\mathcal{H}_{1} \rightarrow \mathrm{bb}, \mathrm{cc}, \mathrm{gg}\right)(\mathrm{q} \overline{\mathrm{q}})$	189-209	626.9	30-.85	10-42,	[56]
$(\mathrm{q} q \mathrm{q} q \overline{\mathrm{q}})(\nu \bar{\nu})$	91	46.3	10-75	0-35	[64,65]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}})(\mathrm{q} \overline{\mathrm{q}})$	183	54.1	$40-80$	10.5-38	[61]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}})(\mathrm{q} \overline{\mathrm{q}})$	189	172.1	40-100	$10.5-48$	[62]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}})(\mathrm{q} \overline{\mathrm{q}})$	192-209	421.2	80-120	$12-m_{\mathcal{H}_{2}} / 2$	[10]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}})(\nu \bar{\nu})$	183	53.9	50-95	$10.5-m_{\mathcal{H}_{2}} / 2$	[61]
$(\mathrm{q} \bar{q} \mathrm{q} \overline{\mathrm{q}})(\nu \bar{\nu})$	189	171.4	50-100	$10.5-m_{\mathcal{H}_{2}} / 2$	-62]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \mathrm{b})(\nu \bar{\nu})$	199-209	207.2	100-110	$12-m_{\mathcal{H}_{2}} / 2$	[10]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}})\left(\tau^{+} \tau^{-}\right)$	183	53.7	30-100	$10.5-m_{\mathcal{H}_{2}} / 2$	[61]
$(\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}})\left(\tau^{+} \tau^{-}\right)$	189	168.7	30-100	$10.5-m_{\mathcal{H}_{2}} / 2$	-62]
$\begin{aligned}\left(\mathrm{bbbb}, \mathrm{bb} \tau^{+} \tau^{-}\right. & \left., \tau^{+} \tau^{-} \tau^{+} \tau^{-}\right) \\ & \left(\nu \bar{\nu}, \mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}\right)\end{aligned}$	189-209	598.5	$45-90$	$2-10.5$	[68]

[40] DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C2 (1998) 1.
[41] DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C10 (1999) 563.
42] DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C17 (2000) 187; [Addendum: Eur. Phys. J. C17 (2000) 529].
[43] DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C32 (2004) 145
[44] DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C23 (2002) 409.
[45] DELPHI Collaboration, J. Abdallah et al., Eur.Phys.J. C44 (2005) 147.
46] DELPHI 92-80 Dallas PHYS 191, Neutral Higgs Bosons in a Two Doublet Model, contribution to the 1992 ICHEP conference; quoted by G.Wormser, in proc. of the XXVI ICHEP conference (Dallas, August 1992), Vol. 2, pages 1309-14, ref. 4.

47] DELPHI 2003-045-CONF-665, DELPHI results on neutral Higgs bosons in MSSM bench mark scenarios, contribution to the 2003 summer conferences.
56] L3 Collaboration, P. Achard et al., Phys. Lett. B545 (2002) 30.
[60] OPAL Collaboration, K. Ackerstaff et. al., Eur. Phys. J. C5 (1998) 19.
[61] OPAL Collaboration, G. Abbiendi et. al., Eur. Phys. J. C7 (1999) 407.
[62] OPAL Collaboration, G. Abbiendi et. al., Eur. Phys. J. C12 (2000) 567
[63] OPAL Collaboration, G.Abbiendi et al., Eur. Phys. J. C26 (2003) 479.
[64] OPAL Collaboration, G. Alexander et. al., Z. Phys. C73 (1997) 189.
[65] OPAL Collaboration, R. Akers et. al., Z. Phys. C64 (1994) 1.
[66] OPAL Collaboration, G. Abbiendi et. al., Eur. Phys. J. C18 (2001) 425
[67] OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C40 (2005) 317.
[68] OPAL Collaboration, G.Abbiendi et al., Eur. Phys. J. C27 (2003) 483.

[^0]: Radovan Dermisek
 Department of Physics, Indiana University, Bloomington, IN 47405
 John F. Gunion
 Department of Physics, University of California, Davis, CA 95616, USA
 and
 Theory Group, CERN, CH-1211, Geneva 23, Switzerland

 Abstract: Recent BaBar limits on $B R\left(\Upsilon(3 S) \rightarrow \gamma a \rightarrow \gamma \tau^{+} \tau^{-}\right)$and $B R(\Upsilon(3 S) \rightarrow \gamma a \rightarrow$ $\gamma \mu^{+} \mu^{-}$) provide increased constraints on the $a b \bar{b}$ coupling of a CP-odd Higgs boson, a, with $m_{a}<M_{\Upsilon(3 S)}$. We extract these limits from the BaBar data and compare to the limits previously obtained using other data sets, especially the CLEO-III $B R(\Upsilon(1 S) \rightarrow$ $\gamma \rightarrow \tau^{+} \tau^{-}$) limits. Comparisons are made to predictions in the context of "ideal"-Higgs NMSSM scenarios, in which the lightest CP-even Higgs boson, h_{1}, can have mass below 105 GeV (as preferred by precision electroweak data) and yet can escape old LEP limits by virtue of decays to a pair of the lightest CP-odd Higgs bosons, $h_{1} \rightarrow a_{1} a_{1}$, with $m_{a_{1}}<2 m_{B}$. Most such scenarios with $m_{a_{1}}<2 m_{\tau}$ are eliminated, but the bulk of the $m_{a_{1}}>7.5 \mathrm{GeV}$ scenarios, which are theoretically the most favored, survive. We also outline the impact of preliminary ALEPH LEP results in the $e^{+} e^{-} \rightarrow Z+4 \tau$ channel. For $\tan \beta \geq 3$, only NMSSM ideal Higgs scenarios with $m_{h_{1}} \sim 105 \mathrm{GeV}$ (the upper limit of "ideal") and $m_{a_{1}}$ close to $2 m_{B}$ satisfy the preliminary ALEPH limits. For $\tan \beta \lesssim 2$, the ALEPH results pick out the most theoretically preferred NMSSM scenarios which are those with $m_{a_{1}}$ close to $2 m_{B}$ and $m_{h_{1}} \sim 90 \mathrm{GeV}-100 \mathrm{GeV}$.

