Rencontres de Moriond Electroweak Interactions and Unified Theories

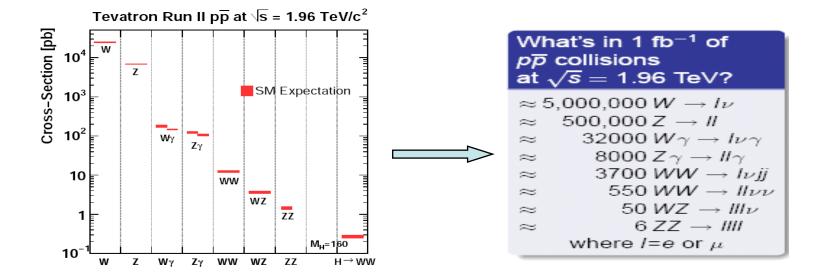
March 6 - 13, 2010 La Thuile, Italy

Diboson Production at the Tevatron

For CDF and DØ Collaboration

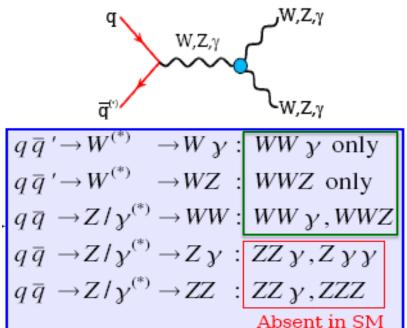
Outline

Introduction


- **•** Wγ production
 - Radiation Amplitude Zero
- WW production
 - Cross section measurement
 - **Triple Gauge Boson Couplings**
- WZ production
 - Cross section measurement
 - **Triple Gauge Boson Couplings**
- Semi-hadronic WZ/WW/ZZ decays
- Zγ production
 - **Cross section measurement**
 - **Triple Gauge Boson Couplings**
- ZZ production
 - First observation
 - **Cross section measurement**
- Summary

- Tevatron diboson program: measure production cross sections, study kinematics and probe gauge boson self-interactions.
- Diboson production is one of the least tested areas of the SM.
- Triple gauge vertices are sensitive to physics beyond the SM.
- Tevatron complementary to LEP: explores higher energies and different combinations of couplings.
- In the SM, diboson productions are important to understand: they shares many characteristics and present backgrounds to Higgs and SUSY.

Introduction

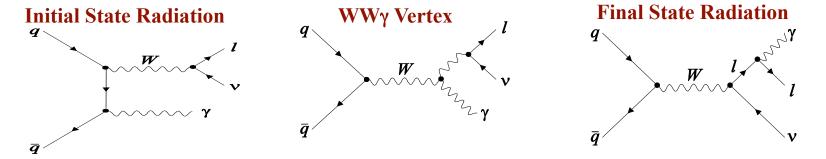


• Excursions from the SM can be described via effective Lagrangian:

$$L_{WWV}/g_{WWV} = \boxed{g_V^1} (W_{\mu\nu}^+ W^\mu V^\nu - W_\mu^+ V_\nu W^{\mu\nu}) + \kappa_V W_\mu^+ W_\nu V^{mn} + \frac{\lambda_V}{M_W^2} W_{\lambda\mu}^+ W_\nu^\mu V^{\nu\lambda} where V = Z, \gamma In SM: g_V^1 = \kappa_V = 1, \ \lambda_V = 0$$

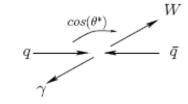
- Anomalous Triple Gauge Coupling's (TGC) increase production cross sections, particularly at high values of the boson E_T (W/Z/γ).
- Unitarity violation avoided by introducing a form-factor scale Λ, modifying the anomalous coupling at high energy:

$$\lambda(\hat{\mathbf{s}}) = \frac{\lambda}{\left(1 + \hat{\mathbf{s}}/\Lambda^2\right)^2}$$

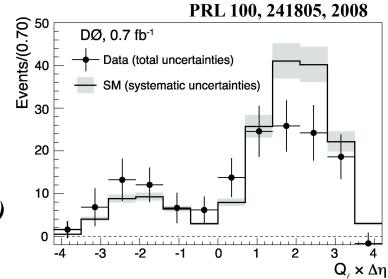

• Two types of effective Lagrangians with: on-shell $Z\gamma$ on-shell ZZ $(Z\gamma Z^*, Z\gamma\gamma^*)$ $(ZZZ^*, ZZ\gamma^*)$ h_{10}^V, h_{20}^V (CP violating) f_{40}^V h_{30}^V, h_{40}^V (CP conserving) f_{50}^V SM predicts all to be 0

CPF

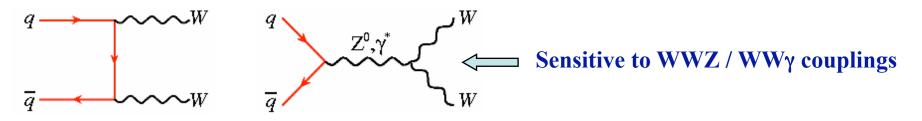
$W\gamma \rightarrow l\nu\gamma$ analysis at DØ



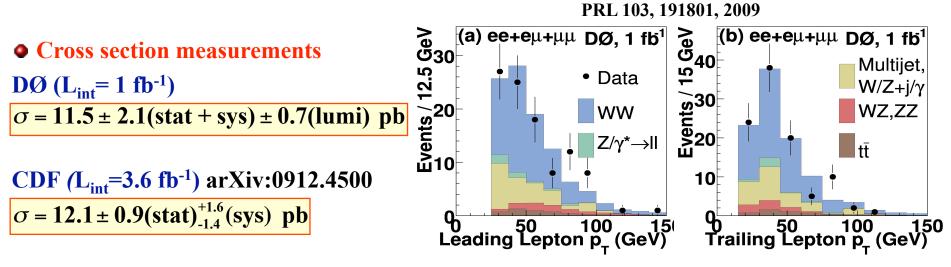
• Three main diagrams for Wγ production at the Tevatron:


- Photons radiated from quark and W lines interfere destructively.
 - **Zero amplitude at**
 - $> \cos\theta^* = +1/3$ for u dbar $\rightarrow W^+\gamma$

$$> \cos\theta^* = -1/3$$
 for d ubar $\rightarrow W^-\gamma$

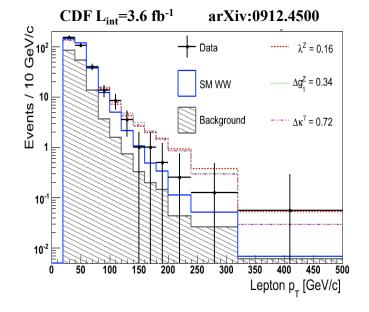

□ No measurement of p_z of v: use Q_l × (η_γ -η_l) to observe "dip" in the distribution
 □ Non-SM coupling may fill the "dip"

"No dip" hypothesis ruled out at 2.6 σ level constitutes first indication for radiation-amplitude zero in Wγ.



- Oilepton channel provides cleanest signature: ee, μμ or eμ and missing E_T
- Signature similar to H→WW→*ll*vv production
- Main background processes: W+j/γ, dijet, Drell-Yan, top pairs, WZ, ZZ
- Theory prediction for production cross section is 12.0-13.5 pb: accessible at Tevatron Run II already with a *O*(100) pb⁻¹.

WW→*ll*νν production: probing WWZ and WWγ couplings

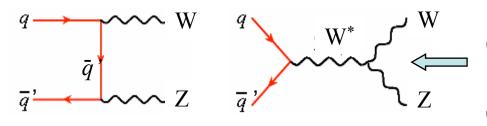


- Use p_T spectra of leptons to probe WWZ and WWγ couplings:
 - > Non-SM TGC enhances cross-section at high-p_T.
- Study various scenarios for WWZ and WWγ coupling relations, and different values of Λ.
- 95 % C.L. limits on TGC's (Λ= 2 TeV):

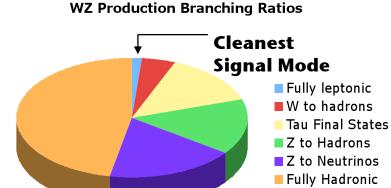
> Assuming equal couplings:

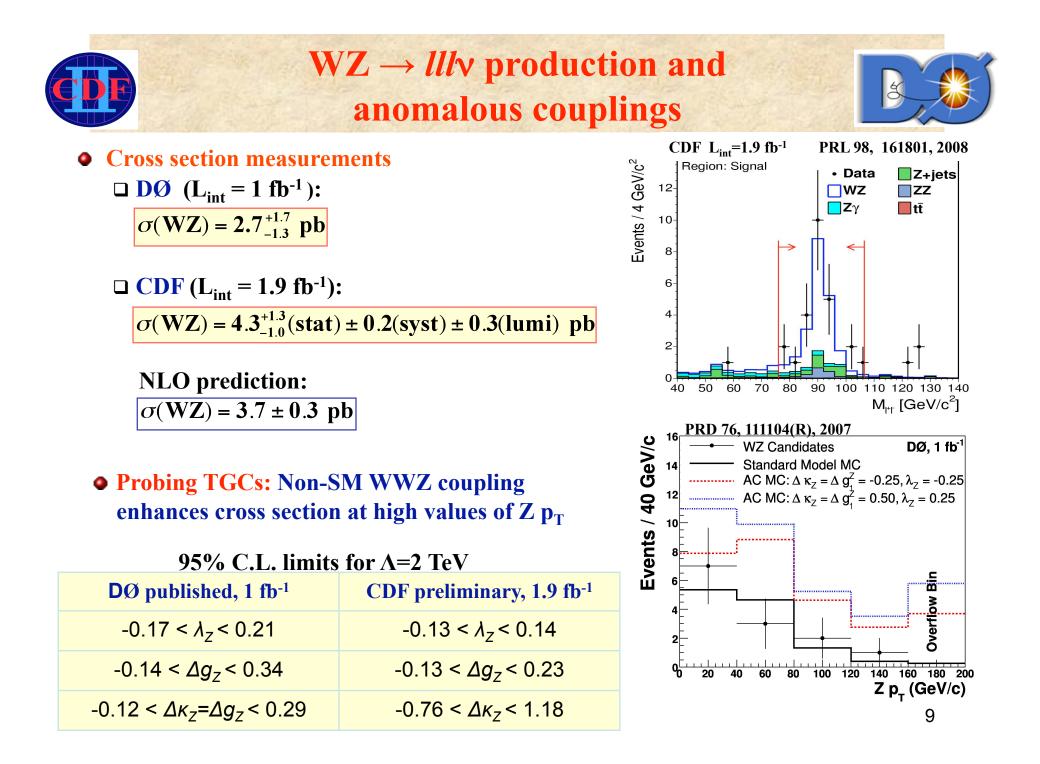
$$\kappa_Z = \kappa_{\gamma}, \ g_1^{\ Z} = g_1^{\ \gamma} = 1, \ \text{and} \ \lambda_{\gamma} = \lambda_Z$$

$$D\emptyset \quad -0.12 < \Delta \kappa < 0.35 \\ -0.14 < \lambda < 0.18$$


 \succ Respecting SU(2)_L×U(1)_Y symmetry: $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_\gamma \tan^2 \theta_W$ and $\lambda_\gamma = \lambda_Z$

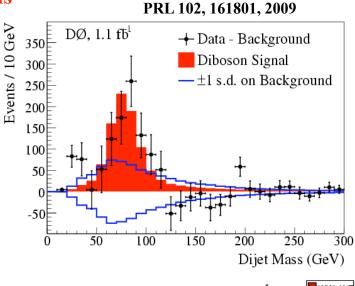
DØ

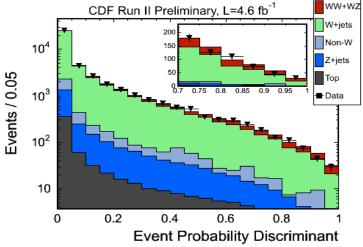

$WZ \rightarrow lllv$ production



- Sensitive to WWZ coupling only (WW is sensitive to both WWZ and WWγ).
- WZ production is unavailable at e⁺e⁻ colliders.
- Search for WZ production in 3 leptons
 (eee,eeμ, eμμ, μμμ) + missing E_T
- Distinct, but rare signature:
 - $\succ \sigma(\text{ppbar}\rightarrow\text{WZ}) = 3.7 \pm 0.3 \text{ pb}$
 - ➤ Branching fraction ~1.5%

• Background processes: Z+jet(s), ZZ, Zγ, ttbar production





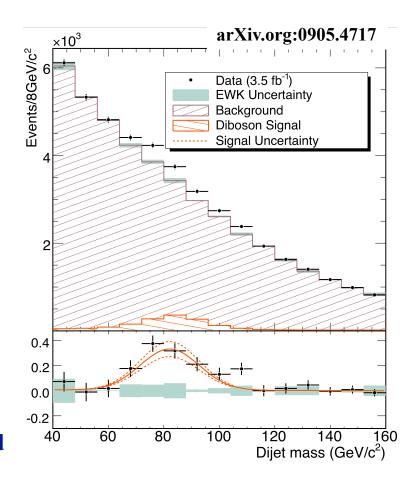
- Combined analysis of WW→*l*vjj and WZ→*l*vjj channels
- Final state similar to WH→*l*vbb
- Experimentally challenging:
 - > 5-10 × more data than in leptonic channels
 - > 1000 × more background: W/Z+jets, QCD, ttbar
- Select events with
 - > High- $p_T e/\mu$, large E_T^{miss} and $M_T(l, E_T^{miss})$
 - $> \geq 2$ jets
- S/B < 1% after selection
 - > Use multivariate discriminant (Lhood, ME)
 - Look for "bump" in M(jj) distribution
- Cross section measurements
 - > D0 (L_{int}=1.1 fb⁻¹) evidence at 4.4 σ significance σ (WW + WZ) = 20.2 ± 4.5 pb
 - $\succ \text{CDF} (\text{L}_{\text{int}} = 4.6 \text{ fb}^{-1}) \text{observation at } 5.4\sigma \text{ significance}$ $\sigma (\text{WW} + \text{WZ}) = 16.5^{+3.3}_{-3.0} \text{ pb}$
 - SM NLO calculation σ (WW + WZ) = 16.1 ± 0.9pb

VV → MET+jets analysis at CDF

- Combined analysis of ZZ→vvjj, ZW→vvjj/lvjj and WW→lvjj channels
- Final state similar to WH→*l*vbb
- Challenging
 - > difficult to trigger benefits from L2 met/cal trigger upgrade at CDF
 - Iarge background from W/Z+jets, ttbar and QCD multijet.

• Select events with

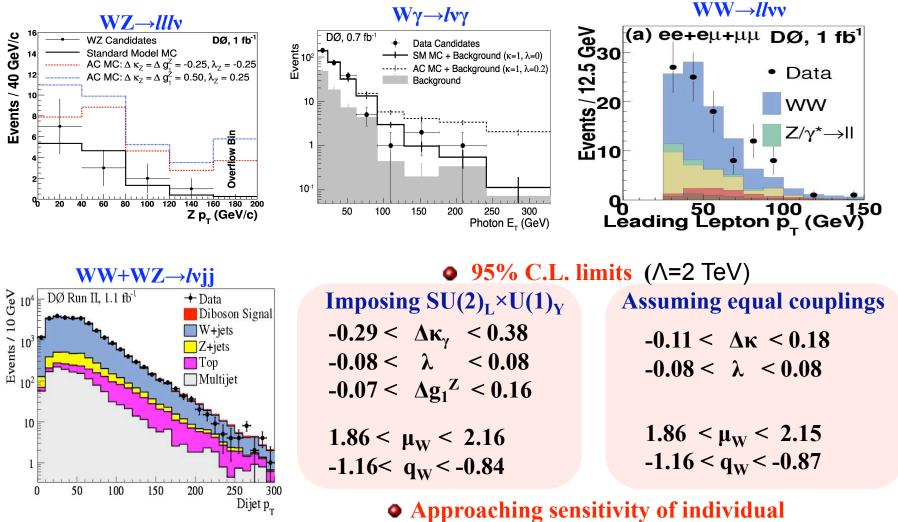
> High E_T^{miss} and E_T^{miss} significance


$$\rightarrow \Delta \phi(E_T^{miss}, jet) > 0.4$$

- > Small $\Delta \phi(E_T^{miss}, trkE_T^{miss})$
- Cross section extracted using unbinned extended maximum Lhood fit of di-jet mass:

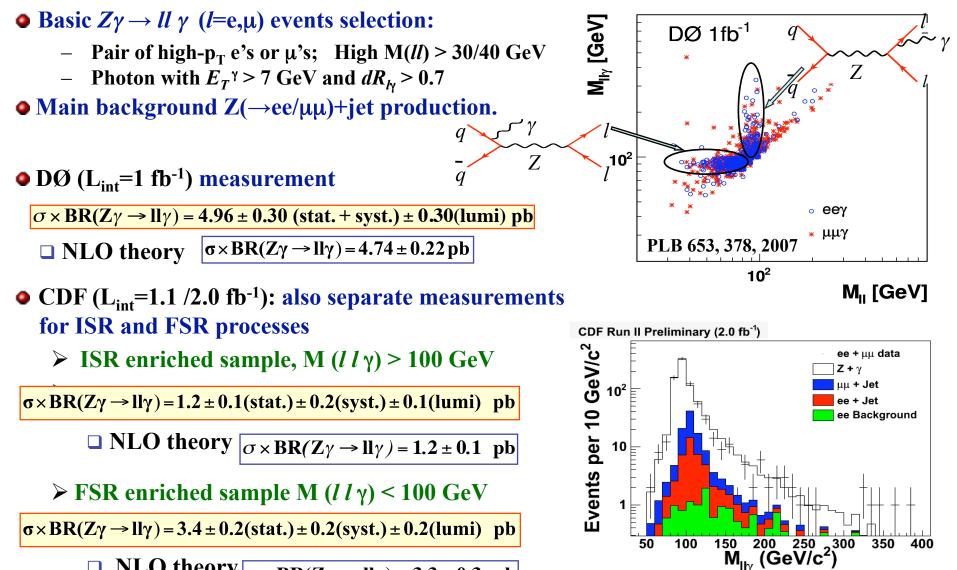
 σ (WW + WZ + ZZ) = 18.0 ± 2.8(stat) ± 2.4(sys) ± 1.1(lumi)pb

SM prediction = 16.8 ± 0.5 pb (MCFM+CTEQ6M)


• **Observed significance** = 5.3σ \Rightarrow First Tevatron observation.

• Combination of four DØ analyses to probe TGCs and W magnetic dipole (μ_W) and electric quadrupole (q_W) moments.

Approaching sensitivity of indiv LEP experiments



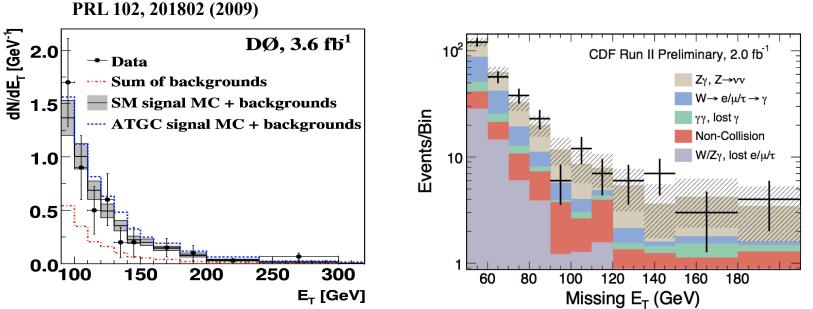
$Z \gamma \rightarrow ll \gamma$ analysis

400

13

50

□ NLO theory $\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 3.3 \pm 0.3$ pb

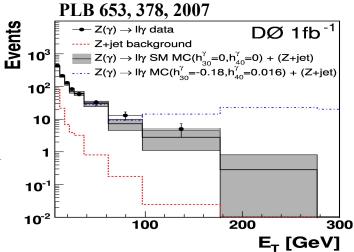

• Final state includes

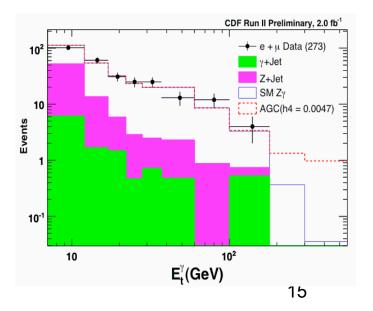
- > Energetic photon (e.g. E_T > 90 GeV) and large missing E_T (e.g. > 70 GeV)
- Background: W \rightarrow lv and Z \rightarrow ll productions, beam halo, mis-measured missing E_T
- DØ (L_{int}=3.6 fb⁻¹) measurement

 $\sigma(Z\gamma, E_T^{\gamma} > 90 \text{GeV}) \times BR(Z \rightarrow \nu\nu) = 31.9 \pm 9(\text{stat} + \text{sys}) \pm 2(\text{lumi}) \text{ fb}$

SM NLO prediction = 39 ± 4 fb

• Significance of observation 5.1 σ – First Tevatron observation

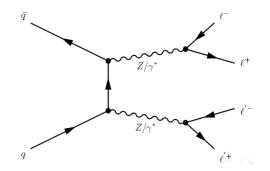

Z γ analysis: probing ZγZ and Zγγ couplings

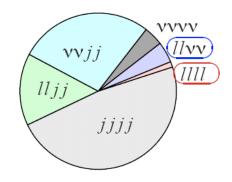


- No ZyZ and Zyy vertices in SM
- Non-SM ZγZ and Zγγ TGCs enhance production cross section
 - > Particularly at high-p_T region of photon
 - Probes h^Z_{30,40} and h^γ_{30,40} parameters (both zero in SM)
- Combined 95 % C.L. limits on γZZ and γγZ TGCs from Zγ→ννγ / eeγ / μμγ channels.

	DØ published 1 fb ⁻¹ ee/μμ, 3.6 fb ⁻¹ vv Λ=1.5 TeV	CDF preliminary 1.1 fb ⁻¹ ee, 2.0 fb ⁻¹ μμ/νν Λ=1.2 TeV
\mathbf{h}_{30}^{γ}	[-0.033, 0.033]	[-0.051, 0.051]
\mathbf{h}_{40}^{γ}	[-0.0017, 0.0017]	[-0.0034, 0.0034]
$\begin{array}{c} h^Z_{30} \\ h^Z_{40} \end{array}$	[-0.033, 0.033] [-0.0017, 0.0017]	[-0.050, 0.050] [-0.0034, 0.0034]

• Some of the most restrictive limits so far.


• Very small production cross section: $\sigma(p\overline{p} \rightarrow ZZ) = 1.4 - 1.6 \text{ pb}$


• Two main decay modes studied at the Tevatron

- $\ \ \Box \ ZZ \rightarrow 4l, \ \ with \ \ l=e,\mu$
 - Four high-pT isolated leptons;
 - On-shell Z boson requirements:
 - > CDF: $M_1(II) = [76 106 \text{ GeV}], M_2(II) = [40 140 \text{ GeV}].$
 - > DØ: $M_1(ll) > 70 \text{ GeV}, M_2(ll) > 50 \text{ GeV}$
 - Low background from Z/γ+jets and ttbar.
 - Small BR = $(2 \times 0.033)^2 = 0.0044$

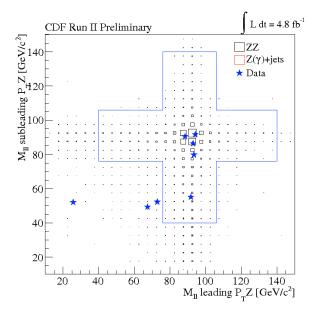
$\Box ZZ \rightarrow llvv, with l = e, \mu$

- Events with $ee/\mu\mu$ + large E_t^{mis} .
- Several significant background processes: WW, Z+jets, WZ, Drell-Yan productions
- 6 times larger BR =2 × 0.2 × (2×0.033)=0.026
- Use multivariate approach to discriminate between signal and background:
 - > Matrix Element method by CDF
 - ➤ Likelihood method by DØ

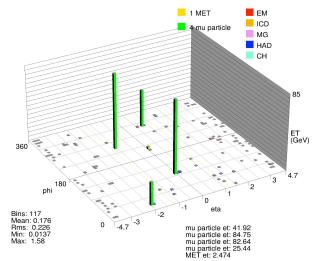
ZZ production

● Z→4l channel

- Split 4e, 4µ and 2e2µ channels into exclusive categories depending whether a lepton has a track and/or is identified explicitly.
- □ DØ (L_{int}=2.7 fb⁻¹): 3 candidates observed
 - **>** 5.7σ stat. significance first Tevatron Observation
- □ CDF (L_{int} = 4.8 fb⁻¹): 5 candidates observed

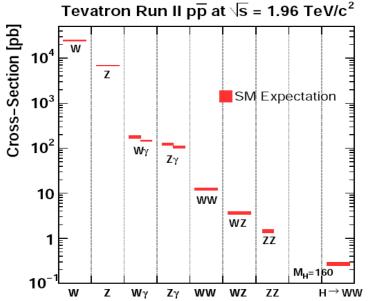

• Cross section measurements

DØ combined channels, L_{int}=2.7 fb⁻¹ (PRL 101, 17803, 2008):


 $\sigma(ZZ) = 1.60 \pm 0.63(stat)^{+0.16}_{-0.17}(sys) \text{ pb}$

□ CDF Z→4l L_{int} =4.8 fb⁻¹ (preliminary): $\sigma(ZZ) = 1.56^{+0.80}_{-0.63}(stat) \pm 0.25(sys) \text{ pb}$

 $\sigma(ZZ)=1.4\pm0.1$ pb predicted by NLO



Summary

- Very rich diboson program at the Tevatron:
 - □ First time observations of diboson processes not accessible previously.
 - □ Important benchmarks for the Higgs searches.
 - Testing various triple gauge boson couplings with increasingly higher precisions.
 - Probing peculiar features predicted by the Standard Model.
 - Extending studies beyond leptonic final states.

note: this is σ , not $\sigma imes \mathsf{BR}$

• With only fraction of data analyzed and ×1.5 more luminosity expected from the accelerator, more precise diboson measurements from Tevatron in the near future.