

Neutral-Current π⁰ Backgrounds for

Joshua Albert Duke University March 11, 2010 Rencontres de Moriond YSF

T2K

T2K Overview

- High intensity beam of v_µ travels
 295 km beneath Japan from the synchrotron at J-PARC in Tokai to the Super-Kamiokande Detector (SK).
- Near detectors at 280m measure unoscillated beam

Detection of excess ν_e at SK is evidence for oscillation induced by θ₁₃. Whether this mixing angle is non-zero is currently unknown.

First T2K v seen at SK in Feb 2010!

Juke

Joshua Albert

2/6

• Our primary signal is Charged Current Quasi-Elastic (CCQE) v_e events.

CC: Mediated by W[±] Produces lepton, revealing v flavor Affected by oscillation

 Our primary signal is Charged Current Quasi-Elastic (CCQE) v_e events.

CC: Mediated by W[±] Produces lepton, revealing v flavor Affected by oscillation

 Our primary signal is Charged Current Quasi-Elastic (CCQE) v_e events.

QE: Only the lepton is produced. Kinematics are simple enough that we can reconstruct parent v energy.

$$E_{\nu} = \frac{m_N E_l - m_l^2/2}{m_N - E_l + p_l \cos \theta_l}$$

CC: Mediated by W[±] Produces lepton, revealing v flavor Affected by oscillation

 Our primary signal is Charged Current Quasi-Elastic (CCQE) ν_e events.

QE: Only the lepton is produced. Kinematics are simple enough that we can reconstruct parent v energy.

- Look for single electron!
- Backgrounds: Beam v_e , v_μ mis-recon

$$E_{\nu} = \frac{m_N E_l - m_l^2/2}{m_N - E_l + p_l \cos \theta_l}$$

Joshua Albert

CC: Mediated by W[±] Produces lepton, revealing v flavor Affected by oscillation

 Our primary signal is Charged Current Quasi-Elastic (CCQE) ν_e events.

QE: Only the lepton is produced. Kinematics are simple enough that we can reconstruct parent v energy.

- Look for single electron!
 Virtually Irreducible
- Backgrounds: Beam v_e , v_μ mis-recon

$$E_{\nu} = \frac{m_N E_l - m_l^2/2}{m_N - E_l + p_l \cos \theta_l}$$

Juke

CC: Mediated by W[±] Produces lepton, revealing v flavor Affected by oscillation

- Our primary signal is Charged Current Quasi-Elastic (CCQE) v_e events.
 - QE: Only the lepton is produced. Kinematics are simple enough that we can reconstruct parent v energy.
- Look for single electron!
 Virtually Irreducible CC and NC
- Backgrounds: Beam v_e , v_μ mis-recon

$$E_{\nu} = \frac{m_N E_l - m_l^2/2}{m_N - E_l + p_l \cos \theta_l}$$

No cuts Bkg expectation:

Juke

NC V_u

49%

 $CC v_{\mu}$

48%

3%

Joshua Albert

Detection at SK

- Cherenkov light from charged particles traveling with $\beta > 0.75$ (the speed of light in water) is detected by PMTs on the walls.
- Pos, Mom, Dir, calculated from patterns and timing info.

Detection at SK

- Cherenkov light from charged particles traveling with $\beta > 0.75$ (the speed of light in water) is detected by PMTs on the walls.
- Pos, Mom, Dir, calculated from patterns and timing info.

Sharp boundary **m** non-showering particles **m** (μ , p, π^{\pm} ...)

Diffuse boundary showering (pair-producing)
 particles (γ, e)

Juke

Detection at SK

- Cherenkov light from charged particles traveling with $\beta > 0.75$ (the speed of light in water) is detected by PMTs on the walls.
- Pos, Mom, Dir, calculated from patterns and timing info.

Sharp boundary **m** non-showering particles **m** (μ , p, π^{\pm} ...)

Juke

Joshua Albert

NC $\pi^{\scriptscriptstyle 0}$ Backgrounds for T2K

NC π⁰ Background

NC π⁰ events can emulate our signal through asymmetric decay

NC π⁰ Background

• NC π^0 events can emulate our signal through asymmetric decay

- The much fainter 2nd ring may be missed in normal ring-finding algorithms.
- Remaining γ -ring is indistinguishable from an e-ring.

T2K MC NC π⁰ 1 e-like ring found

Identifying π^0 s

Joshua Albert

NC π^0 Backgrounds for T2K

Identifying π^0 s

Select most likely 2nd ring
 from vertex using likelihood.

Identifying π^0 s

Select most likely 2nd ring
 from vertex using likelihood.

NOTE: A 2nd ring will be selected whether or not it exists or is more favored over 1-ring hypothesis!

Identifying π^0 s

Select most likely 2nd ring
 from vertex using likelihood.

T2K MC NC π^0 1 e-like ring found

Identifying π^0 s

Select most likely 2nd ring from vertex using likelihood.

Construct invariant mass

Joshua Albert

NC π^0 Backgrounds for T2K

T2K MC NC π^0 1 e-like ring found

Identifying π^0 s

Select most likely 2nd ring from vertex using likelihood.

Construct invariant mass

oshua Albert

NC π^0 Backgrounds for T2K

T2K MC NC π⁰ 1 e-like ring found

Identifying π^0 s

Select most likely 2nd ring
 from vertex using likelihood.

• Construct invariant mass

Identifying π⁰s

Select most likely 2nd ring
 from vertex using likelihood.

• Construct invariant mass

