Searches for new physics in Upsilon decays

Steven Robertson Institute of Particle Physics

Presented at **Rencontres de Moriond EW 2010** 6-13 March 2010 La Thuile, Italy

On behalf of the BABAR Collaboration

Overview

Direct searches for Higgs bosons and dark matter candidates at a B factory:

- $\Upsilon(2S, 3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$
- $\Upsilon(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau^+ \tau^-$
- $\Upsilon(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \text{invisible}$
- $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(1S), \Upsilon(1S) \rightarrow \text{invisible}$

Presentation by Elisa Guido:

- Lepton universality and lepton flavour violation in Υ decays

Physics Motivation

- Light CP-odd Higgs bosons arise in many beyond SM scenarios
 - NMSSM: adding singlet Higgs field to MSSM results in an additional CP-odd Higgs that mixes with MSSM 10⁻³ **CP-odd Higgs**

$$\mathbf{A}^{0} \equiv \mathbf{a}_{1} = \mathbf{cos} \mathbf{\theta}_{\mathbf{A}} \ \mathbf{a}_{\text{MSSM}} + \sin \mathbf{\theta}_{\mathbf{A}} \ \mathbf{a}_{\text{singlet}}$$

- for $m_{A0} < 2m_B$ the lightest CP-even Higgs (h⁰) can evade LEP bounds by $h^0 \rightarrow A^0 A^0$
- Generic dark matter models can be constructed by postulating dark matter candidate χ^0 and scalar (or vector) boson U $(m_{_{\rm II}} \sim 2m_{_{\scriptscriptstyle Y}})$ to mediate s-channel annihilation
 - U boson couples to Standard Model particles via mixing with bosons PRD 72:103508 (2005)
- Either scenario can produce substantial • enhancements in narrow Upsilon branching fractions

 $m_{10} < 2m_{10}$ $2m_{r} < m_{A^{0}} < 7.5 \text{ GeV}$ 7.5 GeV < m₁₀ < 8.8 GeV 8.8 GeV < m₁₀ < 9.2 GeV tanβ=10, μ=150 GeV M, 100, 200, 300 GeV 10^{-4} 10⁻⁵ BR(Y 10-6 10^{-7} -0.50.0 0.5 $\cos\theta_{A}$

A°)

PRL 95:041801 (2005); PRD 76:051105 (2007)

BABAR data samples

- BaBar data sets:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays
 - "offpeak" samples of 1.4fb^{-1} and 2.4fb^{-1} collected ~30 MeV below the $\Upsilon(2S)$ and $\Upsilon(3S)$
 - 79 fb⁻¹ "continuum background" samples of Υ(4S) with similar detector conditions

 Trigger requirements modified for narrow Υ data taking

$\Upsilon(2S, 3S) \rightarrow \gamma A^0$

- A^0 can be produced in 2-body radiative decays of narrow Υ states
- $A^0 \rightarrow \tau^+ \tau^-$ typically dominant for $m_{A^0} > 2m_{\tau}$
- A⁰→μ⁺μ⁻ can be significant below τ⁺τ⁻ threshold
- Possibly also large branching fraction to neutralino pairs (i.e. invisible)

 $\Upsilon(2S, 3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^- \text{ PRL 103, 081803 (2009)}$

• Search for fully reconstructed $\Upsilon(2S,\,3S)$ final state with $\mu^{\!\scriptscriptstyle +}\mu^{\!\scriptscriptstyle -}$ mass resonance

- require exactly two oppositely charged tracks, which for a vertex, and at least one of which is identified as a muon
- require a single photon with E_γ > 200 MeV (lower energy photons permitted)
- additional colinearity criteria applied to γ/A^0 and γ/μ combinations to suppress dominant background from "continuum" $e^+e^- \rightarrow \gamma \mu^+\mu^-$
- Kinematic fit of γ μ⁺μ⁻ system, including beam energy and primary vertex constraints

Scan the $\mu^+\mu^-$ invariant mass spectrum for evidence of a A^0 peak

- continuum and known resonances ρ^0 , ϕ , J/ ψ , $\psi(2S)$, $\Upsilon(1S)$ included in background parameterization
- signal shape from MC, with width varying as a function of m_{A^0}
- fit sliding 300 MeV window in 2-5 MeV steps
 - i.e. <1 σ of signal A⁰ mass resolution
- J/ψ , $\psi(2S)$ regions explicitly excluded from search
- 1951 points in total

- Most significant positive fluctuations is 2.8σ (3.1σ) in Y(3S) (Y(2S)) sample
 - consistent with expected statistical fluctuations given number of independent trials
- No signal observed at m_{A⁰} ~ 214 MeV (HyperCP)
 - Effective Yukawa coupling of A⁰ to bound state b-quark $\mathcal{B}(\Upsilon(nS) \rightarrow \gamma A^0) = f_{\Upsilon}^2 \left(1 - m_{A0}^2 \right)$

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^{0})}{\mathcal{B}(\Upsilon(nS) \to l^{+}l^{-})} = \frac{f_{\Upsilon}^{2}}{2\pi\alpha} \left(1 - \frac{m_{A^{0}}^{2}}{m_{\Upsilon(nS)}^{2}}\right)$$

$\Upsilon(3S) \rightarrow \gamma A^0, \quad A^0 \rightarrow \tau^+ \tau^- \text{ PRL 103, 181801 (2009)}$

- Search for $A^0 \rightarrow \tau^+ \tau^-$ in $\tau^+ \rightarrow e^+ \nu \nu$ and $\tau^+ \rightarrow \mu^+ \nu \nu$
 - E_v >100 MeV and exactly two tracks identified as leptons
 - Missing energy in τ decays precludes event kinematic fit; A^0 mass obtained from E_{γ} and known CM energy
 - Additional background suppression provided by set of 8 kinematic and angular variables, optimized in 5 ranges of photon energy

March 10, 2010

$\Upsilon(3S) \rightarrow \gamma A^0, \quad A^0 \rightarrow \tau^+ \tau^- \quad \text{PRL 103, 181801 (2009)}$

- Scan for peaks in E_{ν} spectrum (307 scan points) across range • corresponding to $4.03 < m_{A^0} < 10.10 \text{ GeV/c}^2$
 - signal represented as peaking distribution of known width (varying with E_{y})
 - simultaneous fit to γee and $\gamma \mu \mu$ and $\gamma e \mu$ final states
- Distribution of yield significances consistent with standard normal • distribution

$\underbrace{\Upsilon(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow invisible}_{\text{BABAR preliminary}} \text{ arXiv:0808.0017[hep-ex]}$

- A⁰ → χ⁰ χ⁰ can be dominant decay mode in some NMSSM scenarios with light neutralino LSP
- Search for mono-energetic peak in single photon spectrum
 - Signal selection based on photon fiducial and quality requirements, and the presence of additional detector activity in the event
 - requires single-photon trigger; data sample naturally split into "low" and "high" E_{γ} regions with different background composition:

$$e^+e^- \rightarrow \gamma\gamma$$
 $e^+e^- \rightarrow (e^+e^-)\gamma$

 Selection optimized on 10% of final data sample and signal MC samples generated over a broad range of masses

$\Upsilon(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow invisible \text{ arXiv:0808.0017[hep-ex]} \\ \text{BABAR preliminary}$

• Signal extracted from unbinned maximum likelihood fits to m_x^2 distribution in $\Delta m_x = 0.1 \text{GeV}$ steps

$$\begin{array}{l} B(\Upsilon(3S) \rightarrow \gamma A^0) \cdot B(A^0 \rightarrow \mbox{invisible}) < \\ (0.7-31) \ \mbox{x} \ 10^{\text{-6}} \ \mbox{at} \ 90\% \ \mbox{C.L} \\ \ \mbox{for} \ m_{A^0} \leq 7.8 \ \mbox{GeV} \end{array}$$

$\Upsilon(1S) \rightarrow \text{invisible}$

- $B(\Upsilon(1S) \rightarrow v\bar{v}) \sim 1 \times 10^{-5}$ in Standard Model
 - can be enhanced to ~10⁻⁴ 10⁻³ by decays into pairs of low mass weakly interacting dark matter candidates
- Identify the Y(1S) from the Y(3S)→π⁺π⁻
 Y(1S) transition pions with "recoil" mass consistent with Y(1S)
- Select signal by requiring absence of ^A significant additional activity in the detector
 - peaking background from Υ(1S) decays with undetected (SM) particles passing outside of detector acceptance
 - estimated from MC and validated against "near invisible" control samples

$$M_{\rm rec}^2 = s + M_{\pi\pi}^2 - 2\sqrt{s}E_{\pi\pi}^*$$

$\Upsilon(1S) \rightarrow \text{invisible}$

- Multivariate classifier used to suppress substantial non-peaking background
 - trained on sideband data and signal MC; optimized to minimize background statistical error
- Large "visible" $\Upsilon(1S)$ sample validates MC signal and background models, and overall $\Upsilon(1S)$ yield

order of magnitude improvement over previous limits

Summary

100.0

50.0

10.0

5.0

1.0

0.5

0.1

τ→γX (CUSB−II)

T(3S)→γa→γμμ (BABAR)

2

Coupling

abb

Max

Constraints on light Higgs bosons in the mass region below ~10 GeV/c²

> $\Upsilon(2S, 3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$ PRL 103, 081803 (2009) $\Upsilon(3S) \rightarrow \gamma A^0, \ A^0 \rightarrow \tau^+ \tau^-$ PRL 103, 181801 (2009)

 $\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \text{invisible}$

arXiv:0808.0017[hep-ex] **BABAR** preliminary

can be interpreted in context of NMSSM and similar models

Dark Matter search:

1 $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(1S), \ \Upsilon(1S) \rightarrow \text{invisible}$

B(Υ (1S) → invisible) < 3.0 x 10⁻⁴ (90% CL)

5

m_a (GeV)

bba→bbττ (OPAL)

Ppe-pppp (DETbH)

20

(3S)→7A→7TT (BABAR)

10

 $T(1S) \rightarrow \gamma a \rightarrow \gamma \tau \tau$ (CLEO-III)

CDF 90% CL upper limit CDF 90% CL upper limit

50

η_b observation PRL 101, 071801 (2008)

$\Upsilon(2S, 3S) \rightarrow \gamma A^0, \quad A^0 \rightarrow \mu^+ \mu^- \text{ PRL 103, 081803 (2009)}$

Table 1: Selection criteria for the two regions, low and high energies.

Variable	$3.2 < E_{\gamma}^* < 5.5 { m GeV}$	$2.2 < E_{\gamma}^* < 3.7 { m ~GeV}$
Number of crystals in EMC cluster	$20 < N_{\rm crys} < 48$	$12 < N_{ m crys} < 36$
LAT shower shape	0.24 < LAT < 0.51	0.15 < LAT < 0.49
a_{42} shower shape	$a_{42} < 0.07$	$a_{42} < 0.07$
Polar angle acceptance	$-0.31 < \cos heta_{\gamma}^* < 0.6$	$-0.46 < \cos \theta_{\gamma}^* < 0.46$
2nd highest cluster energy (CMS)	$E_2^* < 0.2 { m ~GeV}$	$E_{2}^{*} < 0.14 { m GeV}$
Extra photon correlation	$\cos(\phi_2^* - \phi_1^*) > -0.95$	$\cos(\phi_2^* - \phi_1^*) > -0.95$
Extra EMC energy (Lab)	$E_{\rm extra} < 0.1 { m ~GeV}$	$E_{\rm extra} < 0.22 {\rm ~GeV}$
IFR veto	$\cos(\Delta \phi^*_{ m NH}) > -0.9$	$\cos(\Delta \phi^*_{ m NH}) > -0.95$
IFR fiducial	$\cos(6\phi_{\gamma}^*) < 0.96$	•••

• precision scan of the $\Upsilon(4S) - \Upsilon(6S)$ region

