MORIOND Electroweak 2010

Theory Summary

Belen Gavela

UAM (Univ. Autónoma de Madrid) and IFT

The happiness in the air of the LHC era

... as we are almost "touching" the Higgs

The LHC & Tevatron may not be the only places in the universe where the Higgs is being produced today

Servant

SM Sensitivity: 159-169 GeV/c²! SM Exclusion: 162-166 GeV/c²!

The happiness in the air of the LHC era

... as we are almost "touching" the vacuum quantum numbers

We ~understand ordinary particles= excitations over the vacuum We DO NOT understand the vacuum = state of lowest energy:

We ~understand ordinary particles= excitations over the vacuum We DO NOT understand the vacuum = state of lowest energy:

•The gravity vaccuum: cosmological cte. Λ , $\Lambda \sim 10^{-123}$ M⁴_{Planck}

We ~understand ordinary particles= excitations over the vacuum We DO NOT understand the vacuum = state of lowest energy:

•The **gravity** vaccuum: cosmological cte. Λ , $\Lambda \sim 10^{-123}$ M⁴_{Planck} * The **QCD** vaccuum : Strong CP problem, $\theta_{\text{QCD}} < 10^{-10}$

We ~understand ordinary particles= excitations over the vacuum We DO NOT understand the vacuum = state of lowest energy:

•The **gravity** vaccuum: cosmological cte. Λ , $\Lambda \sim 10^{-123}$ M⁴_{Planck} * The **QCD** vaccuum : Strong CP problem, $\theta_{OCD} < 10^{-10}$

* The **electroweak** vaccuum: Higgs-mass, v.e.v.~O (100) GeV

We ~understand ordinary particles= excitations over the vacuum We DO NOT understand the vacuum = state of lowest energy:

•The **gravity** vaccuum: cosmological cte. Λ , $\Lambda \sim 10^{-123}$ M_{Planck} * The **QCD** vaccuum : Strong CP problem, $\theta_{QCD} < 10^{-10}$ * The **electroweak** vaccuum: Higgs-mass, v.e.v.~O (100) GeV

The Higgs excitation has the quantum numbers of the EW vacuum

We ~understand ordinary particles= excitations over the vacuum We DO NOT understand the vacuum = state of lowest energy:

•The gravity vaccuum: cosmological cte. Λ , $\Lambda \sim 10^{-123}$ M⁴_{Planck}

* The **QCD** vaccuum : Strong CP problem, $\theta_{QCD} \le 10^{-10}$

* The **electroweak** vaccuum: Higgs-mass, v.e.v.~O (100) GeV

The (Tevatron->) LHC era will allow us to explore it

The state of the art on our control

of the SM predictions

The effective theory in the infinite m_{top} limit matches finite m_{top} at %level NNLO

Two-loop diagrams contributing to the process $gg \rightarrow H$.

Are QCD corrections to gg fusion under control?

Harlander : YES

Are QCD corrections to gg fusion under control?

Djouadi: NO because error in

Matching-scale (i.e. in truncation)

LARGE

Djouadi For Tevatron Latest compilations¹

- NLO [Dawson '91], [Spira, Djouadi, Graudenz, Zerwas '91-'95]
 → +110% of LO
- NNLO [RH, Kilgore '02], [Anastasiou, Melnikov '02]
 → +60% of LO (30% of NLO)

- soft gluon resummation (or $\mu_F = \mu_R = m_H/2$) $\rightarrow +11\%$ [Catani, de Florian, Grazzini, Nason '03]
- electro-weak → +6% of LO [Actis, Passarino, Sturm, Uccirati '08]
- π^2 resummation *not* included
- PDFs: MRST2006 \rightarrow MSTW2008 \rightarrow -13% (!)

PDF+ $\Delta^{\exp} \alpha_{s} + \Delta^{th} \alpha_{s} - - > \sim 20\%$ Djouadi

Djouadi:

How to combine errors?

95% CL CDF/D0 exclusion limit 162 \leq $M_{\rm H}$ \leq 166 GeV not credible ?

Djouadi:

How to combine errors?

95% CL CDF/D0 exclusion limit 162 \leq $M_{
m H}$ \leq 166 GeV not credible ?

Djouadi

How to combine errors?

- add scale and PDF not in quadrature - exp+th error on α_s should be added

adds ~40%error for M_H>150

Djouadi

How to combine errors?

– add scale and PDF not in quadrature – exp+th error on α_s should be added adds ~40%error for M_H>150

The mass of the top

Direct determination of the MS top mass

Using total cross section as a function of m_{top}

to minimize non-perturbative effects

Include all threshold logarithms at 2-loop based on NNLL resummation + …

 \rightarrow Perturbation theory better behaved !

Tevatron, D0

Tevatron, D0

Tevatron, D0

Is the "Higgs signal" a SM Higgs ?

Is the "Higgs signal" a SM Higgs?

* what QUANTUM NUMBERS? (spin, parity...)? pure state ?

* Even if it is a 0⁺, are COUPLING STRENGTHS as in SM? i.e. SM Yukawa or gauge couplings?

..... and in a model independent way ?

Is the "Higgs signal" a SM Higgs?

* what QUANTUM NUMBERS? (spin, parity...)? pure state ?

..... and in a model independent way ?

Rauch:

Assume your signal is a scalar "Higgs": are its couplings SM ones?

SM tree-level $\longrightarrow g_{jjH} \longrightarrow g_{jjH}^{SM} (1 + \Delta_{jjH})$

SM one-loop $\longrightarrow g_{jjH} \longrightarrow g_{jjH}^{SM} \left(1 + \Delta_{jjH}^{SM} + \Delta_{jjH}\right)$

Light Higgs , H --> bb

fat jets

Assume your signal is a scalar "Higgs": are its couplings SM ones?

Light Higgs

Rauch : SM with deviations Δ_{iiH} allowed in Higgs coupling

Errors obtained by 10,000 toy experiments: SM hypothesis, $m_H = 120 \text{ GeV}$, $\mathcal{L} = 30 \text{ fb}^{-1}$ Fit with Gaussian of the central part within one standard deviation

no eff. couplings with eff. couplings ratio $\Delta_{iiH/WWH}$ $\sigma_{
m neg}$ $\sigma_{\rm neg}$ $\sigma_{\rm neg}$ $\sigma_{\rm symm}$ $\sigma_{\rm symm}$ $\sigma_{\rm pos}$ $\sigma_{\rm pos}$ $\sigma_{\rm symm}$ $\sigma_{\rm pos}$ $\Delta_{WWH} \pm 0.23$ -0.21 + 0.26-0.21+0.27±0.24 -0.40 + 0.35 $\pm 0.31 | -0.35 + 0.29$ ± 0.36 $\pm 0.41 - 0.40 + 0.41$ Δ_{77H} ±0.41 -0.37 + 0.45±0.53 -0.65 + 0.43 $\pm 0.51 - 0.54 + 0.48$ Δ_{ttH} ±0.45 -0.33 + 0.56±0.44 -0.30 + 0.59 ± 0.31 -0.24 + 0.38 Δ_{bbH} $\pm 0.31 | -0.19 + 0.46$ ± 0.33 -0.21 + 0.46 $\pm 0.28 | -0.16 + 0.40$ $\Delta_{\tau\tau H}$ $\pm 0.31 | -0.30 + 0.33$ $\pm 0.30 | -0.27 + 0.33$ $\Delta_{\gamma\gamma H}$ ±0.61 -0.59 + 0.62 $\pm 0.61 - 0.71 + 0.46$ Δ_{aaH} ±0.26 -0.26 + 0.26±0.25 -0.26 + 0.25т_н $\pm 0.071 | -0.071 + 0.071 | \pm 0.071 |$ -0.071 ± 0.072 mb SFitter -1.00 + 0.98 $\pm 1.00 | -1.03 + 0.98$ ±0.99 mt

claims sensitivity to deviations of **#10%** with 30 fb⁻¹, m_H=120 GeV

* How to determine its QUANTUM NUMBERS? (spin, parity...)?

Rogan: exploit golden channel and angular correlations

"Higgs" Spin

0

What are the quantum numbers?

$$L_{\mu\alpha} = X g_{\mu\alpha} - (Y + i Z) \frac{k_{\alpha}k_{\mu}}{M_Z^2} + (P + i Q) \epsilon_{\mu\alpha} \frac{p_1 p_2}{M_Z^2}, \qquad \text{SM: X=1}$$

$$L^{\rho\mu\alpha} = X \left(g^{\rho\mu} \, p_1^{\alpha} + g^{\rho\alpha} \, p_2^{\mu} \right) + (P + i \, Q) \, \epsilon^{\rho\mu\alpha} (p_1 - p_2),$$

$$\begin{array}{rcl} 2^+ & L^{\rho\sigma\mu\alpha} = & X_0 \, m_H^2 \, g^{\mu\rho} \, g^{\alpha\sigma} \\ & + (X_1 + i \, Y_1) \, (p_1^\alpha \, p_2^\rho \, g^{\sigma\mu} + p_1^\rho \, p_2^\mu \, g^{\sigma\alpha}) \\ & + (X_2 + i \, Y_2) \, p_1^\rho \, p_2^\sigma \, g^{\mu\alpha}, \end{array}$$

Five relevant angular variables

•Refine much previous analysis +detector phase-space acceptance

Refine much previous analysis +detector phase-space acceptance

Beyond the SM models

BSM because

1) Experimental evidence for new particle physics:

*** Neutrino masses *** Dark matter

2) SM fine-tunings/uneasiness, i.e. in electroweak:

*** Hierarchy problem *** Flavour puzzle

BSM electroweak

* HIERARCHY PROBLEM

fine-tuning issue: if BSM physics, why Higgs so light

Interesting mechanisms to solve it from SUSY; strong-int. Higgs, extra-dim....

In practice, none without further fine-tunings

•FLAVOUR PUZZLE: no progress BSMs tend to make it worse

understanding stalled since 30 years, Only new B physics data AND neutrino masses and mixings

The FLAVOUR WALL for BSM

i) Typically, BSMs have **electric dipole moments** at one loop i.e susy MSSM:

< 1 loop in SM ---> Best (precision) window of new physics

ii) FCNC

i.e susy MSSM:

$$K^{0} - \overline{K}^{0} \operatorname{mixing} \begin{array}{c} \bar{s} \\ \tilde{g} \\ \underline{\tilde{g}} \\ \underline{\tilde{g}}$$

competing with SM at one-loop

Facing the FLAVOUR WALL in MSSM

Susy Flavour problem

Lavígnac

culprit: susy breaking

$$\begin{aligned} \mathcal{L}_{\text{soft}}^{\text{MSSM}} &= -\frac{1}{2} \left(M_3 \, \tilde{g} \tilde{g} + M_2 \, \tilde{W} \tilde{W} + M_1 \, \tilde{B} \tilde{B} + \text{h.c.} \right) \\ &- \left(A_u \, \tilde{Q} \tilde{u} H_u - A_d \, \tilde{Q} \tilde{d} H_d - A_e \, \tilde{L} \tilde{e} H_d + \text{h.c.} \right) \\ &- \tilde{Q}^{\dagger} m_Q^2 \, \tilde{Q} - \tilde{L}^{\dagger} m_L^2 \, \tilde{L} - \tilde{u}^{\dagger} m_{\bar{u}}^2 \, \tilde{u} - \tilde{d}^{\dagger} m_{\bar{d}}^2 \, \tilde{d} - \tilde{e}^{\dagger} m_{\bar{e}}^2 \, \tilde{e} \\ &- m_{H_u}^2 H_u^{\dagger} H_u - m_{H_d}^2 H_d^{\dagger} H_d - (B \mu H_u H_d + \text{h.c.}) \end{aligned}$$

is universal soft terms: $(m_Q^2)_{ij}pprox m^2\delta_{ij}$.

magic recipee

~100 free parameters -----> a few

is universal soft terms: $(m_Q^2)_{ij}pprox m^2\delta_{ij}$.

magic recipee

~100 free parameters -----> a few

You can view this as $\begin{cases} a \ from mSUGRA \\ \\ \end{cases}$

Quantifying tuning and probability

Assuming **c**MSSM (= mSUGRA), how fine-tuned/probable is the model? We heard:

 i) A quantification of the remaining little hierarchy fine-tuning *Cassel* ---> some regions with light Higgs still allow ~ 10% fine-tunning

ii) A thorough improved Bayesian sweep over the cMSSM parameter space.
 Bayesian statistics quantifies one's degree of belief in inputs and results Cabrera

Quantifying tuning and probability

- Assuming **c**MSSM (= mSUGRA), how fine-tuned/probable is the model? We heard:
- A quantification of the remaining little hierarchy fine-tuning *Cassel* ---> some regions with light Higgs still allow ~ 10% fine-tunning
- ii) A thorough improved Bayesian sweep over the **c**MSSM parameter space.
- * again, light Higgs favored
 * "sizeable probability of not discovering susy at LHC" (i.e. 50% with 1 fb⁻¹)

... if it is there at all

is universal soft terms: $(m_Q^2)_{ij}pprox m^2\delta_{ij}$.

magic recipee

~100 free parameters -----> a few

You can view this as b) Put by hand

is universal soft terms: $(m_Q^2)_{ij}pprox m^2\delta_{ij}$.

magic recipee

~100 free parameters -----> a few

a) Inspired from mSUGRA

You can view this as

b) Put by hand

Where díd naturalness go?

is universal soft terms: $(m_Q^2)_{ij}pprox m^2\delta_{ij}$

magic recipee

~100 free parameters -----> a few

a) Inspired from mSUGRA

You can view this as

b) Put by hand

Do you have a better way?

GAUGE MEDIATION

Mariotti, Facing the FLAVOUR WALL in MSSM

GAUGE MEDIATION

Loop suppressed FLAVOUR transitions and other advantages

Nevertheless: μ , $B\mu$ and other problems remain/worsen

* LSP in gauge mediation: gravitino

Lavígnac: Combining gauge mediation with unification

* LSP may be neutralino (bino)

- NLSP may be gravitino or gluino

Mariotti, Facing the FLAVOUR WALL in MSSM

SEMI-DIRECT GAUGE MEDIATION

More loop suppressed FLAVOUR transitions and other advantages

Nevertheless: μ , $B\mu$ and other problems remain/worsen

Nardecchia Facing the FLAVOUR WALL in MSSM

TREE-LEVEL GAUGE MEDIATION possible!

Suppressed FLAVOUR transitions and other advantages

 μ , $B\mu$ and other problems perhaps ameliorate ?

Facing the FLAVOUR WALL in MSSM

GAUGE MEDIATION

Facing the FLAVOUR WALL in MSSM

GAUGE MEDIATION

Díd naturalness survíve ?

Facing HIERARCHY in MSSM

The great attractive of weak scale susy:

* The Higgs mass is protected from quadratic dependences on new heavy physics scales

(also provides dark matter candidates..... nice)

The rest is not so bright....

"little hierarchy" problem ~1%, and more

* You need to add a crossed term $B\mu H_u H_d$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

i) adjust CP-odd scalar A_1 H --> $A_1 A_1$, $m_{A1} \sim 10 \text{ GeV}$

Singlino LSP $- \sim 4 \tau$'s per Susy event - possibly displaced vertices from stau-decays! "No Higgs" at the LHC can be a signal

 $\mathcal{D}omingo: \eta_b - A_1$ mixing also possible

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

until this Tuesday... Cranmer : LEP data

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

i) adjust CP-odd scalar A₁ H --> A₁ A₁, m _{A1} ~10 GeV

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

ii) adjust CP-even scalar and account for LEP excess-hints

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

i) adjust CP-odd scalar A_1 H --> $A_1 A_1$, m $_{A1}$ ~10 GeV

ii) adjust CP-even scalar and account for LEP excess-hints

But NMSSM also has to face the Flavour wall:

NMSSM -----> cNMSSM

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% ->
 i.e. It has singlet scalars:

ii) adjust CP-even scalar and account for Lep excess-hints

But NMSSM also has to face the Flavour wall: NMSSM -----> CNMSSM
* BY HAND ?

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>**NMSSM</u>**: justify μ as $\mu = \langle S \rangle$ </u>

* This could help too with the "little hierarchy" problem ~1% -> Where did naturalness go??

ii) adjust CP-even scalar and account for Lep excess-hints

But NMSSM also has to face the Flavour wall: * mSUGRA ? NMSSM -----> CNMSSM * BY HAND ?

* You need to add a crossed term $B_{\mu} H_{u} H_{d}$ with $\mu \sim 100 \text{ GeV}$

<u>NMSSM</u>: justify μ as $\mu = \langle S \rangle$

* This could help too with the "little hierarchy" problem ~1% -> i.e. It has circulat scalars: Do you have a better model?

ii) adjust CP-even scalar and account for Lep excess-hints

But NMSSM also has to face the Flavour wall: * mSUGRA ? NMSSM -----> CNMSSM * BY HAND ?

Antoniadis : NOT QUITE

rather try something else: stay away from preconceived models

• Effective actions with higher-dim/hdo:

appropriate tools to parametrize our ignorance about new physics

• Effective actions with higher-dim/hdo:

appropriate tools to parametrize our ignorance about new physics

•Sticks to MSSM to soften the large hierarchy gap

Adds effective operators to compensate the little hierarchy problem ~1% :

• Effective actions with higher-dim/hdo:

appropriate tools to parametrize our ignorance about new physics

•Sticks to MSSM to soften the large hierarchy gap

Adds effective operators to compensate the little hierarchy problem ~1% :

* From singlet S, as in NMSSM but heavy-->

 $BSH_uH_d \rightarrow \lambda (H_uH_d)^2$: extra free term to shift m_H

• Adds effective operators up to d=6

Effective actions with higher-dim/hdo:

appropriate tools to parametrize our ignorance about new physics

•Sticks to MSSM to soften the large hierarchy gap

Adds effective operators to compensate the little hierarchy problem ~1% :

- •Enhanced H \rightarrow bb decays
- •Enhanced squark pair production
- •Heavier Higgs
- •Lighter stop
Antoniadis Facing HIERARCHY in MSSM

Effective actions with higher-dim/hdo:

appropriate tools to parametrize our ignorance about new physics

•Sticks to MSSM to soften the large hierarchy gap

Adds effective operators to compensate the little hierarchy problem ~1% :

•With tunings, it is possible to lift the Higgs mass to

 $\Rightarrow m_h \simeq 103 - 119 \,\, {
m GeV}$

But FLAVOUR WALL : i.e. the induced corrections to Yukawa couplings are made flavour diagonal by hand

Bernal

Same than Antoniadis et al., but it is enough for them to

stop at $(H_uH_d)^2$ operators, in order to solve the little hierarchy

WHY?:

They do not impose positivity of the potential (unlike Antoniadis)

.... or not so strictly... (ok e.g. in models with 2 vaccua

... light stops, heavy sleptons

---> prospects for dark matter detection

In these MSSM+ effective approaches...

Aren't we trading the **little hierarchy** by the new distinct scale(s) $M \neq M_{susy}$ which weight down the effective ops.?

while the whole point of susy EW was to avoid adjusting EW scales...

Are these examples alike to simply add (heavy) scalar singlets ??

Facing the hierarchy problem without susy

To protect the Higgs mass -----> use a symmetry other than susy

•i.e a global symmetry: i.e. Technicolor

if it has a Higgs, it can be its ~Goldstone boson:

little Higgs, composite, some extra-dim...

Strong dynamics is good to give masses to W, Z i.e. Technicolor , etc.

So is susy at the electroweak scale

Strong dynamics is good to give masses to W, Z i.e. Technicolor , etc.

The main trouble also here used to be the FERMION WALL

Strong dynamics is good to give masses to W, Z i.e. Technicolor , etc.

The main trouble also here used to be the FERMION WALL

Grípaíos: Composite + Kaplan's idea.... FCNC could be OK; predicts 50% deviations in Yukawa and gauge couplings -->*Rauch's* talk

A Moriond scoop

Terning

Facing the hierarchy problem without susy

Magnetic Monopoles

a fourth generation with magnetic charges?

Csaki, Terning, Shirman

Terning

Facing the hierarchy problem without susy

Magnetic Monopoles

SM a fourth generation with magnetic charges?

Csaki, Terning, Sherman

→ it is as if you would be doing technicolor, but with gauge group U(1)

→ it is as if you would be doing technicolor, but with gauge group U(1)

-> At least one heavy up-type fermion: **heavy top built-in !** (Callan-Rubakov effect)

→Neutrinos come out with zero mass... this needs extension

 \rightarrow Why other up-type quarks not so heavy as top quarks?

Even if no real monopole field theory... it is stimulating

→ it is as if you would be doing technicolor, but with gauge group U(1)

-> At least one heavy up-type fermion: **heavy top built-in !** (Callan-Rubakov effect)

→Neutrinos come out with zero mass... this needs extension

 \rightarrow Why other up-type quarks not so heavy as top quarks?

Even if no real monopole field theory... it is stimulating

Two fewer parameters than SM:

There is no Higgs

Grojean, Weiler, JT

Trade hierarchy of scales for geometry.... in a non-trivial interesting way

But extra-dim model stumble on the FLAVOUR WALL FCNC... flavour spectrum

i.e. RS

Neutrino masses are a challenge: all scales are at most TeV.... even Majorana scale ?

To stabilize the distance (radion): add a scalar field

Quíros

Quíros

Quíros

FLAVOUR HARD WALL: no improvement

As we are playing with geometry...

We have only understood gauge int.

*In SM, fermion and scalar representations are set completely by hand

Schucker: in non-conmutative geometry:

* fermions predicted in the fundamental

* scalar representation predicted: only one Higgs

* even gauge groups restricted?

"prediction" " $m_H \sim 170 + 10 \text{ GeV}$ " (at what scale ??)

Not yet known how to include QM-field theory... which is essential to understand data

Can we miss the Higgs?

We better don't.....

The threat is serious....

Maybe **NOT** finding supersymmetry at the LHC will be a signal of supersymmetry **?**

Can we miss the Higgs at LHC ?

THE VAN DER BIJ MALEDICTION

* 1980 Van der Bij + A. Hill

Can we miss the Higgs at LHC ?

THE VAN DER BIJ MALEDICTION

* 1980 Van der Bij + A. Hill resurfaced in Moriond 2010 disguised as Gaugephobic Unhiggs Effective ops.
Extended standard model (with A. Hill)^T
Higgs-sector
Higgs doublet

$$l = -\frac{1}{2} (D, d)^{+} (D^{+} d^{+}) - \frac{\lambda_{1}}{P} (d^{+}d - f_{1}^{2})^{2}$$

 $-\frac{1}{2} (\partial_{\mu} \chi)^{2} - \frac{\lambda_{2}}{P} (2 f_{2} \chi - d^{+}d)^{2}$
 $M_{w} = \frac{g}{2} \frac{f_{1}}{2}$
Scalar singlet

Extended standard model (with A. Hill)[†]
Higgs-sector
Higgs doublet

$$l = -\frac{1}{2} (D, d)^{+} (D^{+} d^{+}) - \frac{\lambda_{1}}{\sigma} (d^{+}d - f_{1}^{2})^{2}$$

 $-\frac{1}{2} (\partial_{\mu} x)^{2} - \frac{\lambda_{2}}{\sigma} (2 f_{2} x - d^{+}d)^{2}$
* The Higgs ϕ and x mix
* x is a SM singlet
Scalar singlet
Contraction
Scalar singlet
Contraction
Con

 the singlet-like CP-even scalar can mix with the SM-like CP-even scalar, and have a mass below 114 GeV (allowed by LEP!)

Lessons/Hints from LEP

Search for $H \rightarrow b\overline{b}$, $\tau^+ \tau^-$ (comb. 4 exp., LEP-Higgs Working Group):

Light excess of events for $m_H \sim 95 - 100$ GeV ($\sim 2.3 \sigma$) If such an H exists, it must possess:

 \rightarrow Either a reduced coupling $g_{HZZ}/g_{HZZ_SM} \equiv \xi \lesssim 0.4 - 0.5$

 \rightarrow or a reduced BR to $b\overline{b}$: BR($H \rightarrow b\overline{b}$)/BR_{SM} $\lesssim 0.2$

 $\rightarrow BR(H \rightarrow A_1A_1) \sim 80 - 90\%?$ (Dermisek, Gunion: solution of the "little finetuning problem" of the MSSM)

Terning Missing the Higgs 95% CL limit on ξ^2 1 LEP **(a)** $\sqrt{s} = 91-210 \text{ GeV}$ $\xi^2 \equiv \frac{\sigma(e^+e^- \to HZ)}{\sigma_{SM}}$ Observed Expected for background -1 a light Gaugephobic/Unhiggs could have been -2 missed at LEP 10 100 80 20 40 60 120

m_H(GeV/c²)

Terning Missing the Higgs CL limit on ξ^2 1 LEP **(a)** $\sqrt{s} = 91-210 \text{ GeV}$ $\xi^2 \equiv \frac{\sigma(e^+e^- \to HZ)}{\sigma_{SM}}$ Observed

Yes, we can...

Yes, we can... miss the Higgs

i.e. it is enough to add singlet scalar(s) to SM

Higgs search at the Tevatron

Btw: if this data are combined with LEP2 ones... what happens?

Higgs search at the Tevatron

Btw: if this data are combined with LEP2 ones... what happens? ask Patrick Janot

BSM why nots

* Go for simplicity: **SM + Z'** *Villadoro*

$$Z'_{\mu}(g_{Y}J_{Y}+g_{X}J_{X})^{\mu}$$

*** only 3 new parameters:
$$M_{Z'}, g_Y, g_X$$

Z – Z' mixing angle:

$$\tan \theta' = -\widetilde{g}_Y \, \frac{M_{Z^0}^2}{M_{Z'}^2 - M_{Z^0}^2}$$

BSM why nots

* Go for simplicity: **SM + Z'** *Villadoro*

$$Z'_{\mu}(g_{Y}J_{Y}+g_{X}J_{X})^{\mu}$$

*** only 3 new parameters:

$$M_{z'}, g_{y}, g_{\chi}$$
 $X = B - L$

Z – Z' mixing angle:

$$\tan \theta' = -\widetilde{g}_Y \, \frac{M_{Z^0}^2}{M_{Z'}^2 - M_{Z^0}^2}$$

BSM why nots

* Go for simplicity: **SM + Z'** *Villadoro*

$$Z'_{\mu}(g_{Y}J_{Y}+g_{X}J_{X})^{\mu}$$

*** only 3 new parameters: $M_{z'}, g_{y}, g_{\chi}$ X = B - L

Z - Z' mixing angle:

 $\tan \theta' = -\widetilde{g}_Y \, \frac{M_{Z^0}^2}{M_{Z'}^2 - M_{Z^0}^2}$

- **X= B 3L**_e
- **X= Β 3L**_μ

X=
$$L_e - L_\mu$$

* Go for simplicity: **SM + Z'**

7 TeV - 50pb⁻¹ M₇

Villadoro

Vílladoro

Gauge inv. -->FCNC OK

easily accessible at very early LHC

e.g. 7 TeV & 50 pb⁻¹

Lattice QCD

Now you SEE the chiral logs

Mescía

ETMC arXiV:0803.0224

2008, unquenched, Wilson-like fermions

Pion mass in the lattice down to 156 MeV!

Pion mass in the lattice down to 156 MeV !

Large impact of chiral improvement on

weak matrix elements on the lattice

which are essential to extract V_{CKM} from data

Lattice enters high precision era

 $f_{\rm K}/f_{\pi}$: an example of Modern lattice measure

Hadronic uncertainties from $\langle 0 | \bar{s} \gamma^{\mu} \gamma_{5} u | K \rangle = p^{\mu} f_{K}$ $\langle 0 | \bar{d} \gamma^{\mu} \gamma_{5} u | \pi \rangle = p^{\mu} f_{\pi}$

Mescía

Lattice enters high precision era <%

 $f_{\rm K}/f_{\pi}$: an example of Modern lattice measure

Hadronic uncertainties from $\langle 0 | \bar{s} \gamma^{\mu} \gamma_{5} u | K \rangle = p^{\mu} f_{K}$ $\langle 0 | \bar{d} \gamma^{\mu} \gamma_{5} u | \pi \rangle = p^{\mu} f_{\pi}$

K→lv: exp. err 0.2% lattice err. on f_{κ}/f_{π} : 2-3% (2006)→0.7% (2010) $f_{\kappa}/f_{\pi} = 1.192 \pm 0.009 [0.75\%]$

More quark flavour

Minimal Flavour violation (MFV)

•Flavour data (i.e. B physics) consistent with all flavour physics coming from Yukawa

MFV Hypothesis \equiv The Yukawas are the only sources (*irreducible*) of flavour violation. in BSM

R. S. Chivukula and H. Georgi, Phys. Lett. B 188, 99 (1987).

It is very predictive for quarks: $O^{d=6} \sim \overline{Q}_{\alpha} Q_{\beta} \overline{Q}_{\gamma} Q_{\delta}$ $\int = \int_{SM} + c^{d=6} O^{d=6} + \dots$ $\int \Lambda_{flavour}^{2}$ known function of Yukawas

(D'Ambrosio, Cirigliano, Isidori, Grinstein, Wise....Buras....)

I. NA62 main targets are the rare K decays ($Br \leq 10^{-11}$), e.g. $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ s

Minimal Flavour violation (MFV)

•Unitarity of CKM first row:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9999 \pm 0.0006$$

•*Restrict to flavour blind ops.-> 4 operators

•Correction is only multiplicative to β and $\ \mu$ decay rate

The direct experimental limit puts strong constraints on all 4 operators, at the level of the colliders constraints or better.

$\theta_{13} \neq 0$

is the remaining key to measure **leptonic CP violation**

After some quiet expt. years...... >

 θ_{13}

 $sin^2 2\theta_{13}$ sensitivity limit (NH, 90%CL)

Reactor experiments will find or put best limit on θ_{13}

After some quite expt. years...... >

Reactor experiments will find or put best limit on θ_{13}

Sensitivity to **Neutrino hierarchy** if θ_{13} large

A chance to discovery in the next 5-10 years?? Tough

* *Dasgupta* : with SN Vs, sensitivity to hierarchy even for θ_{13} ->0

Dark matter

Visible matter

We ~understand particles = excitations

We DO NOT understand the vacuum

Dark matter

We ignore both vacuum and excitations

* Dark matter may feel only gravity

* Yet, it had to be created somehow ---> interactions?

We should look for those interactions.

* Dark matter particles can have any mass down to < GeV
Green'

Direct detection is the only way of observing the ultralocal DM distribution

We have got a rough idea of what the density and velocity distributions of dark matter are. (Still mainly without including baryons)

* Until about 2 years ago, the halo models were treated analytically

* Simulations are now available

i) scales resolved by simulations are many orders of magnitude larger than those probed by direct detection experiments

Vogelsberger and White: no fine structure in ultra-local DM distribution

Simulations: deviations from standard halo model smaller than feared

Green

Speed distribution

.... error larger for light (GeVs) dark matter mass

AGN jets and dark matter

Electron in the jet + DM \rightarrow selectron \rightarrow DM+e+gamma

(Isotropic) Gamma spectrum cuts off sharply for e at rest

Servant

WIMPS ?

→ a particle with a typical Fermi-scale cross section $\sigma_{anni} \approx 1$ pb leads to the correct dark matter abundance.

Are DM and EW symmetry breaking related ? If so, wimps may have enhanced couplings to massive states, top, W/Z, H etc.

Indirect detection

several ad hoc but SIMPLE models

If such signal seen --> DM is Dirac fermion or vector

DM = Axion-like particles

Magnetic fields in the galaxy convert photons to axions and back

Directional correlations of the foreground magnetic field of the galaxy and distant sources can provide novel information on axion-like particles

Thank you very much

for trying so passionately

to understand nature

Other topics + Back-up

"Setting to zero those ~100 parameters is not a fine tuning but an ansatz "

Agreed, it is not a fine tuning....

it is a brutal tuning unless a new symmetry is advocated

which one ?

If you do not care about naturalness, fine

But then: why did you start this game?

Strong dynamics is good to give masses to W, Z i.e. Technicolor , etc.

The main trouble also here used to be the FERMION WALL

Grípaíos

Composite ----> Strong dynamics

Global symmetry SO(6)/SO(5)

BMG, A. Pomarol, F. Riva, J. Serra, 0902.1483

- Light d. o. f.: SM Higgs plus singlet
- The singlet can be light
- ▶ Non-standard Higgs decays: $h \rightarrow 2\eta \rightarrow 4f$

Higgs is a ~goldstone boson of the global symmetry

FCNC remedy fermion masses through heavy sector

Linearly:
$$\mathscr{L} \subset y_L f_L \mathscr{O}_R + y_R f_R \mathscr{O}_L + g \mathscr{O}_L \mathscr{O}_H \mathscr{O}_R$$

strong sector D. B. Kaplan, 1991

In other words: SM fermions mix with heavy fermions

Gripaíos

Strong sector scale Λ , alike to $\Lambda_{\rm QCD}$, Λ ~4 π V

FCNC + EWcorrections --> Λ ~3 TeV --> V ~500 GeV

but we need v = 250 GeV

---> tuning of 20% in V^2

What is the complete theory? ... problems postponed

Signals: ~ 50% modified Higgs couplings to fermions, W's, g's...

----> Δ_{iiH} analysis in *Rauch's* talk (plu

(plus exotics)

 $mass(v) \neq 0$ ---> **new physics** scale plausibly Majorana

Discover other new physics in neutrino interactions ?

Unfortunately **no** smoking gun of seesaw(s) expected within reach

Whay not try anyway?

i.e. Neutrinos are optimal probes of environmental new forces

Neutrino Oscillation with Non Standard Interaction NSI

Okí

Interaction **only** in matter And not also in production and detection

requires tuning/cancellations among higher order gauge invariant operators ??

 i.e. in the (unobservably small) the NSI interactions characteristic of seesaws, production + propagation + detection ARE correlated

Μίςίου

Again interaction **only** in matter

Εετ - **Ε**ττ

Comparable to Oki's sensitivity to T2KK?

• Form a triple spin correlation $(\vec{s}_{\mu} \times \vec{s}_{e}) \cdot \vec{p}_{e}$

Maybe CP-violation signal in L-R seesaw models

Even if measured, how can we differentiate seesaw-related CP from other CP sources Lokhov

• is coupled to *neutrinos* by transition magnetic moment μ_{v} • high density of matter $n \sim 10^{37} \div 10^{40} \ cm^{-3}$ (neutron stars) **Billard** Directional detection of DM

MIMAC, DRIFT, DM-TPC and NEW AGE will measure the nuclear-recoil direction

Backgrounds are isotropic ! (or have a tractable angular distribution)

A neat Likelihood analysis allows one to reconstruct the INCOMING DM-particle's directional distribution

➔ The direction planet Earth is moving in an assumed Non-rotating Galactic halo

Back up

Schucker

Harlander

The itchiness (or Higgchiness?) in the air of the Tevatron era

... as we are almost "touching" the vacuum quantum numbers