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Garfield++ is a toolkit for the detailed simulation of signals in particle detectors that
are based on ionisation measurement in gases or semiconductors.
It inherits many concepts and techniques from the Fortran program Garfield, which
has been widely used for simulating gas-based detectors.
The development of the C++ version of started ∼ 2011.

Microscopic simulation of electron avalanches in a GEM (left) and around a wire (right).

One of the differences with respect to the Fortran version is that Garfield++ also
includes the possibility to simulate silicon detectors.
The source code is hosted on gitlab. Installation instructions can be found on the
website and in the user guide. Pre-compiled libraries are available on cvmfs.
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http://garfieldpp.web.cern.ch/garfieldpp/
http://garfield.web.cern.ch/garfield/
https://gitlab.cern.ch/garfield/garfieldpp
http://garfieldpp.web.cern.ch/garfieldpp/getting-started
https://garfieldpp.web.cern.ch/documentation/UserGuide.pdf
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Primary ionisation
Energy loss by relativistic charged particles is well described by the PAI model.
Garfield++ includes an interface with Heed (I. Smirnov), which implements an
extended version of this model, simulating also atomic relaxation and delta electron
transport, such that one obtains the coordinates of all low-energy electrons and holes
produced along a track.
One can also use Heed for simulating X-ray photoabsorption.
For simulating ion tracks, one can import results calculated using Srim or Trim.
For other projectiles, a possible solution is to interface Geant4 and Garfield++.

D. Pfeiffer et al, NIM A 935 (2019), 121
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https://doi.org/10.1146/annurev.ns.30.120180.001345
https://doi.org/10.1016/j.nima.2005.08.064
http://garfieldpp.web.cern.ch/garfieldpp/examples/srim/
http://garfieldpp.web.cern.ch/garfieldpp/examples/trim/
https://garfieldpp.web.cern.ch/garfieldpp/examples/geant4-interface
https://doi.org/10.1016/j.nima.2019.04.110
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Electric fields
For simple structures, it is possible to use parameterisations provided by the user.
For more complex/realistic devices, one typically imports field maps calculated using
(Synopsys Sentaurus) TCAD.
This can be done by probing the electric field/potential in SVisual on a regular grid and
exporting the values to a text file, which can then be read by Garfield.
Or (after converting the .tdr output file) one can import directly the mesh (.grd file)
and solution (.dat file).
Can import maps of mobility, lifetimes and other parameters at the same time.
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Charge transport
Typical approach for silicon is to simulate drift lines of individual electrons/holes using a
Monte Carlo technique based on macroscopic transport parameters.
Parameterisations of macroscopic transport properties are based on models found in
literature and device simulation programs.

Default for drift velocity (Si): Canali high-field mobility model.
Default for impact ionisation coefficient (Si): van Overstraeten - de Man model.
Other models (and materials other than silicon) are also available or can be implemented upon
request.

Alternatively, one can import a map of transport data from TCAD (e. g. attachment
coefficient in irradiated devices).
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Induced signals
Given the coordinates of each point along a simulated drift line, the induced current is
calculated based on the Shockley-Ramo formalism, using the static weighting potential.
For calculating the weighting field/potential, the same techniques as for the (drift)
electric field can be followed.

Analytic expressions for strip and pixel weighting fields are pre-implemented.
For geometries containing elements with non-zero conductivity, an extension of the
Shockley-Ramo theorem is needed (more later).
The front-end response can be modelled by convoluting the induced current with a
transfer function (delta response function).
The transfer function can be provided as a user-specified function or as a table, or one
can use a pre-implemented analytic model, e. g. for a unipolar n-stage CR − RC shaper,

f (t) = g exp (n)
(

t
tp

)n

exp (−t/τ) , tp = nτ.

One can also add noise to the induced current pulse, reproducing a given
equivalent-noise charge at the amplifier output.
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A simple example (100 µm thick overdepleted n-on-p sensor)
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One-dimensional approximation for the electric field.

int main(int argc, char *argv[]) {

// Define the active medium.
Garfield::MediumSilicon si;
si.SetTemperature(293.);

constexpr double d = 100.e-4; // Sensor thickness [cm]
constexpr double vbias = -50.; // Bias voltage [V]

// Use a parameterised (linear) drift field.
auto eLin = [](const double x, const double y, const double z,

double& ex, double& ey, double& ez) {
constexpr double vdep = -20.; // Depletion voltage [V]
ex = ez = 0.;
ey = (vbias - vdep) / d + 2 * y * vdep / (d * d);

};

Garfield::ComponentUser efield;
efield.SetElectricField(eLin);
efield.SetArea(-d, 0., -d, d, d, d);
efield.SetMedium(&si);

Garfield::Sensor sensor;
sensor.AddComponent(&efield);
// ...
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Perpendicularly incident charged particle.

//...
Garfield::TrackHeed track;
track.SetSensor(&sensor);
// Set the particle type and momentum [eV/c].
track.SetParticle("pion");
track.SetMomentum(180.e9);

// Simulate electron/hole drift lines using MC integration.
Garfield::AvalancheMC drift;
drift.SetSensor(&sensor);
// Use steps of 1 micron.
drift.SetDistanceSteps(1.e-4);

// Simulate a charged-particle track.
const double xt = 0.;
track.NewTrack(xt, 0, 0, 0, 0, 1, 0);
double xc = 0., yc = 0., zc = 0., tc = 0., ec = 0., extra = 0.;
int ne = 0;
// Retrieve the "clusters" along the track.
while (track.GetCluster(xc, yc, zc, tc, ne, ec, extra)) {

// Loop over the electrons in the cluster.
for (int j = 0; j < ne; ++j) {

double xe = 0., ye = 0., ze = 0., te = 0., ee = 0.;
double dxe = 0., dye = 0., dze = 0.;
track.GetElectron(j, xe, ye, ze, te, ee, dxe, dye, dze);
// Simulate the electron and hole drift lines.
drift.DriftElectron(xe, ye, ze, te);
drift.DriftHole(xe, ye, ze, te);

}
}
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Electron and hole drift lines from a pion track.
Only 1% of the drift lines are shown.
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Pre-implemented analytic expression for the weighting potential of a strip.

// ...
constexpr double pitch = 55.e-4; // Strip width [cm]
Garfield::ComponentAnalyticField wfield;
wfield.SetMedium(&si);
wfield.AddPlaneY(0, vbias, "back");
wfield.AddPlaneY(d, 0, "front");
wfield.AddStripOnPlaneY(’z’, d, -0.5 * pitch, 0.5 * pitch,

"strip");
wfield.AddReadout("strip");

Garfield::Sensor sensor;
sensor.AddElectrode(&wfield, "strip");
Garfield::Shaper shaper(3, 2., 1., "unipolar");
sensor.SetTransferFunction(shaper);
// Set the time bins.
const unsigned int nTimeBins = 2000;
const double tstep = 0.01; // ns
sensor.SetTimeWindow(0., tstep, nTimeBins);

// ...
while (track.GetCluster(xc, yc, zc, tc, ne, ec, extra)) {

// ...
}
// Add noise and convolute with the delta response function.
constexpr double enc = 100.;
sensor.AddWhiteNoise("strip", enc);
sensor.ConvoluteSignals();
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Full source code of the above example is available on gitlab (also as a Python script).
Step-by-step explanations can be found on the website.
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https://gitlab.cern.ch/garfield/garfieldpp/-/blob/master/Examples/Silicon/signal.C
https://gitlab.cern.ch/garfield/garfieldpp/-/blob/master/Examples/Silicon/signal.py
https://garfieldpp.web.cern.ch/examples/silicon/
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A few applications
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Timing studies: planar sensors without gain
Use a simple sensor model (uniform or linear field) to investigate the impact of charge
fluctuations, pixel size, shaper, noise, slewing corrections, etc. on the achievable time
resolution (large parameter phase space!).
The example plot below is for a 50 µm thick sensor with 50 × 50µm2 pixels, at 200 V
bias, 0.5 ns peaking time, ENC = 100 e-.
For more details: presentations by Ann Wang and Marius Mæhlum Halvorsen

Slewing corrections

!6

• To extract a time, we apply a threshold a1 and measure the time at threshold t1  

• To correct the the dependence of t1 on the signal magnitude, we perform a 
slewing correction 

• Several common “charge estimators” used to do this 

• Using Q = ∫i(t)dt, peak value A, ToT (time over threshold), and Δt
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Figure 4: For a 50 micron thick silicon sensor with an infinite readout pad electrode, the uncorrected t0
distributions for a1 = 0.08 mV for tp = 0.5 ns, with (b) and without (a) 100 electrons of noise added. The
distribution without noise has a more pronounced left tail.
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(a) The time at threshold dependence on the
charge measurement Q.
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Figure 6: For a 50 micron thick silicon sensor with an infinite readout pad electrode, the calibration curve
and t0 distributions using the charge measurement Q for a1 = 0.08 mV, tp = 0.5 ns. No noise is added.
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Figure 7: For a 50 micron thick silicon sensor with an infinite readout pad electrode, the calibration curve
and t0 distributions using the peak measurement A for a1 = 0.08 mV, tp = 0.5 ns. No noise is added.

7

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Peaking Time [ns]

1−10×5

1

2
3
4

10

20
30
40

210

210×2

 R
M

S 
[p

s]
0t

Peak
Peak with noise
Q
Q with noise
ToT
ToT with noise

tΔ
t with noiseΔ

(a) RMS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Peaking Time [ns]

1−10×5

1

2
3
4

10

20
30
40

210

210×2

) [
ps

]
0(t

σ

Peak
Peak with noise
Q
Q with noise
ToT
ToT with noise

tΔ
t with noiseΔ

(b) �

Figure 10: t0 resolutions versus tp with di↵erent slewing corrections, for a 50 µm thick sensor without gain
read out by an infinite pad electrode. a1 = 0.08 mV, and for the points using �t, a2 = 2a1.

The threshold crossing time of a signal is dependent on the charge distribution of the signal. This
dependence can be corrected with slewing correction methods, where the relationship between the threshold
crossing time t1 and a charge estimator Q̂ is measured and used in the signal time calculation.

We correct t1 with a variety of common charge estimators, depicted in Figure 5, as well as the integrated
signal charge Q. A calibration sample of 5,000 events is used to derive the function t1 = f(Q̂). The
relationship is then used to correct another sample of 5,000 events.

The corrected time t0 is then given by

t0 = t1 � tc1, (11)

where tc1 = f(Q̂) from the calibration function.
Example calibration curves and fits for each of the charge estimators, as well as the corrected time

distributions, are shown in Figures 6, 7 8, and 9. In particular for the simulation without noise, the t0
distributions are poorly described by a gaussian and has a significant tail due to the skewed charge deposition
distribution.

The results with and without noise for a range of tp values are shown in Fig. 10. We choose a1 = 80 µV,
which given the gain of 1 mV/fC is equivalent to 500 electrons, or 0.08 fC. Let a2 = 2a1.

In the case of no noise, all methods are equivalent at large tp. In this limit, the output of the response
function is simply the transfer function scaled by the amount of charge and shifted by the centroid time and
has no distortion due to the input signal. Thus, any slewing can be perfectly corrected regardless of the
choice of charge estimator.

At smaller tp on the order of the signal time, the slewing correction methods diverge. We see that
using ToT proves the worst correction, performing a factor of four worse than using the peak value as the
correction. Interestingly, using A slightly outperforms using the Q of the signal for shorter peaking times.
For shorter peaking times on the order of tdrift, the detector signal can distort the shape of the response
function. Q is insensitive to these distortions, while the peak A is not for small tp. �t is particulary sensitive
to these distortions, which will correlate t1 and t2 measurements.

The di↵erences can be explained by the charge arrival times. If you imagine, for example, a cluster of
charges which arrives very early to the readout electrode, it will a↵ect t1, t2 and potentially A, while having
minimal e↵ect on Q and tf . Conversely, if there is a very large cluster of charges which arrives very late to
the readout electrode, it will dominate Q and greatly e↵ect the ToT measurement but should have a minimal
e↵ect on t1, A, and t2.

In the case of noise, all methods are comparable except the use of �t, which performs worse than the
others. This is indicative of the low threshold crossing times being very sensitive to noise, as opposed to
correcting using the value of the peak. The ToT outperforms the use of �t, which is further discussed in
Section 4.

We can also study time resolution dependence on the threshold a1. Fixing tp = 0.5 ns, Figure 11
illustrates the dependence on a1 in the case of noise and without noise. In the case of no noise, lowering
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Figure 10: t0 resolutions versus tp with di↵erent slewing corrections, for a 50 µm thick sensor without gain
read out by an infinite pad electrode. a1 = 0.08 mV, and for the points using �t, a2 = 2a1.

The threshold crossing time of a signal is dependent on the charge distribution of the signal. This
dependence can be corrected with slewing correction methods, where the relationship between the threshold
crossing time t1 and a charge estimator Q̂ is measured and used in the signal time calculation.

We correct t1 with a variety of common charge estimators, depicted in Figure 5, as well as the integrated
signal charge Q. A calibration sample of 5,000 events is used to derive the function t1 = f(Q̂). The
relationship is then used to correct another sample of 5,000 events.

The corrected time t0 is then given by

t0 = t1 � tc1, (11)

where tc1 = f(Q̂) from the calibration function.
Example calibration curves and fits for each of the charge estimators, as well as the corrected time

distributions, are shown in Figures 6, 7 8, and 9. In particular for the simulation without noise, the t0
distributions are poorly described by a gaussian and has a significant tail due to the skewed charge deposition
distribution.

The results with and without noise for a range of tp values are shown in Fig. 10. We choose a1 = 80 µV,
which given the gain of 1 mV/fC is equivalent to 500 electrons, or 0.08 fC. Let a2 = 2a1.

In the case of no noise, all methods are equivalent at large tp. In this limit, the output of the response
function is simply the transfer function scaled by the amount of charge and shifted by the centroid time and
has no distortion due to the input signal. Thus, any slewing can be perfectly corrected regardless of the
choice of charge estimator.

At smaller tp on the order of the signal time, the slewing correction methods diverge. We see that
using ToT proves the worst correction, performing a factor of four worse than using the peak value as the
correction. Interestingly, using A slightly outperforms using the Q of the signal for shorter peaking times.
For shorter peaking times on the order of tdrift, the detector signal can distort the shape of the response
function. Q is insensitive to these distortions, while the peak A is not for small tp. �t is particulary sensitive
to these distortions, which will correlate t1 and t2 measurements.

The di↵erences can be explained by the charge arrival times. If you imagine, for example, a cluster of
charges which arrives very early to the readout electrode, it will a↵ect t1, t2 and potentially A, while having
minimal e↵ect on Q and tf . Conversely, if there is a very large cluster of charges which arrives very late to
the readout electrode, it will dominate Q and greatly e↵ect the ToT measurement but should have a minimal
e↵ect on t1, A, and t2.

In the case of noise, all methods are comparable except the use of �t, which performs worse than the
others. This is indicative of the low threshold crossing times being very sensitive to noise, as opposed to
correcting using the value of the peak. The ToT outperforms the use of �t, which is further discussed in
Section 4.

We can also study time resolution dependence on the threshold a1. Fixing tp = 0.5 ns, Figure 11
illustrates the dependence on a1 in the case of noise and without noise. In the case of no noise, lowering
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Time slewing corrections.
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What about weighting field fluctuations?

!18

• Instead of pad weighting field, use pixel weighting field 

• Time resolution ~1.4x-2x worse 

• Doesn’t improve beyond centroid time resolution

centroid time 
(w.o noise)
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https://indico.cern.ch/event/923006/contributions/3877877/
https://indico.cern.ch/event/918298/contributions/3880574/
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Timing studies: planar sensors with gain (LGAD)
Simplified description of the electric field in the bulk and the gain layer.
The example plot below is for a 50 µm thick pad sensor, ENC = 2000 e-.
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Signals in devices with resistive elements
For calculating the induced signal in geometries including elements with finite
conductivity, we need an extension of the Ramo-Shockley theorem.

W. Riegler, NIM A 535 (2004), 287
W. Riegler, CERN Academic Training, December 2019

The time-dependent weighting potential required in this formalism can be calculated
analytically (for simple geometries), or using a finite-element solver (e. g. Comsol). It
can also be calculated in TCAD, using the following recipe.

Calculate the stationary solution at nominal bias conditions.
Apply a small voltage step ∆V on the electrode to be read out.
Run a transient simulation, save a map of the potential at different points in time, and
subtract the static potential.
Split into a “prompt” component and a “delayed” component.

Application: AC-LGADs.

Plots by Djunes Janssens. Preliminary/work in progress!
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https://doi.org/10.1016/j.nima.2004.07.129
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What about SPADs/SiPMs?
In principle, the simulation methods discussed so far can also be used for devices
operated in breakdown.
Limitations to this approach arise from (1) space charge and (2) reduction of the
electric field due to the drop in bias voltage.
Some work ahead. . .
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Monolithic sensors
For MAPS, electric and weighting fields typically need to be calculated using TCAD.
The example plot below is from simulations of the ALICE ALPIDE.
More details: presentation by J. Hasenbichler
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Drift lines (left) and charge collection spectrum from a 55Fe source, for an ALPIDE prototype.
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