

Journées Thématiques du Réseau Semi-conducteurs IN2P3-IRFU IP2I Lyon 10-11 June 2021

Weightfield2 A friendly simulator for silicon detectors

V. Sola

Weightfield2 at a Glance

▷ A fast simulator program to study the performance of silicon and diamond detectors

▶ It simulates the entire signal chain

Weightfield2 at a Glance

Available at linfn.it/wf2

It requires root(.cern.ch) build from source, it is for Linux and Mac-OS

It does not replace TCAD, but it helps in understanding the sensors response

Weightfield2 Highlights

- ▷ It is open source
- ► It is fast
- ▷ It generates the signal from several sources (MIP, alpha, lasers..)
- ▷ It runs in batch mode writing output file
- ▷ It loads/save configurations
- ▷ It performs basics electronics simulation

How to get it

- 1. Obtain the last version from l.infn.it/wf2
- 2. Unzip it
- 3. In a terminal, type "make" or "make -f Makefile_MacOS10.10_root6"
- 4. In the same terminal, type "./weightfield"
- The Manual page explains the basic features of the program

Weightfield2 Layout

Controls

Step 1: Select your sensor

Fields Computation

- ▷ The program loads your geometry
- ▷ It compute the silicon resistivity from the depletion voltage
- ▶ It uses an iterative method to compute:
- \rightarrow The electric field
- \rightarrow The weighting field

Step 1: E field

Step 1: W field

Select your sensor: does it have gain?

- ▷ The program implements a gain layer LGAD design
- ▷ It computes the contribution from the additional doping to the electric field

Step 2: Select the particle

Step 2: Charge deposition – Landau

The program uses GEANT4 with the photo-absorption ionization (PAI) model to generate non-uniform charge depositions

Results cross-checked with several publications, for example: The Impact of Incorporating Shell-corrections to Energy Loss in Silicon

F. Wang, D. Su, B. Nachman, M. Garcia-Sciveres, and Q. Zeng arXiv:1711.05465v2 [physics.ins-det]

"The ionization energy loss fluctuation in very thin silicon sensors significantly deviates from the Landau distribution. Therefore, we have developed a charge deposition setup that implements the Bichsel straggling function, which accounts for shell-effects."

Step 2: Charge deposition – Landau

WF2 e-h pair/micron following Landau distribution Meroli et al (Jinst 6 P06013) 90 80 $MPV = d*[0.027*\ln(d)+0.126]$ 70 $FWHM = 0.31 * d^{0.81}$ e-h paris/micron 00 05 05 09 MPV 20 10 0 50 0 100 150 200 250 300 350 Thickness [micron]

Following Meroli et al (Jinst 6 P06013), these are the parameterizations of the MPV and FWHM as a function of the sensor thickness d for the Landau distribution in silicon

Step 2: Charge carriers drift

Drift of the charge carriers – Ramo's theorem

Current is generated using Ramo's theorem: $i(t) = qv(t)E_w$

$$I_{tot}(t_j) = \sum_{k=1}^n I_k(t_j) = -q \sum_{k=1}^n \overrightarrow{v_k(t_j, x_k)} \cdot \overrightarrow{E_w}(x_k)$$

WF2 – Data: current in PiN

Gain modelling

If the electric field is high enough, carriers generate secondary ionization along the drift path

$$N_e(x) = N_e e^{\beta x}$$
 $N_h(x) = N_h e^{\alpha x}$

$$\alpha = A_n \exp\left\{-\frac{B_n}{E}\right\}$$
$$\beta = A_p \exp\left\{-\frac{B_p}{E}\right\}$$

$$B_{n,p}(T) = C_{n,p} + D_{n,p} T$$

Different impact ionisation models can be selected:

- Massey
- van Overstraeten-de Man
- Okuto-Crowell
- Bologna

WF2 – Currents

WF2 – Electronics

Step 4: Radiation damage

Radiation damage effects

Charge trapping with fluence phi:

$$\mathbf{i}(t) = \mathbf{i}(t)_{new} e^{-t/\tau}$$

 $\tau = \mathbf{\beta} \emptyset$

Acceptor removal:

 $N(\emptyset) = N(\mathbf{0}) * e^{-c\emptyset}$

Acceptor creation:

 $N(\emptyset) = \beta \emptyset$

Time resolution

 $\sigma_{t} = \left(\frac{N}{dV/dt}\right)^{2} + \left(\text{Landau Shape}\right)^{2} + \text{TDC}$ Time walk: Amplitude variation, corrected in electronics

Usual "Jitter" term

Here enters everything that is "Noise" and the steepness of the signal

Need large dV/dt

Shape variations: non-homogeneous energy deposition

Non-uniform charge deposition

This is a physical limit to time resolution Need to use thin detectors and low comparator threshold

Batch mode: deposited & collected charges

Batch mode: time resolution

Time resolution vs thickness

Comparison WF2 Simulation - Data Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

WF2 - 11.06.2021

Compensation with V_{bias}

Due to irradiation, the gain layer atoms get deactivated (acceptor removal) The necessary field can be recovered by increasing the external Vbias: proven to work up to $5 \cdot 10^{15} n_{eq}/cm^2$

WF2 - 11.06.2021

Compensation with V_{bias}

As the gain layer density decreases, we need to increase the external voltages to create the E_{field} needed for multiplications

In so doing, the gain moves from the gain layer to the bulk

Bias voltage to obtain Gain ~ 10 as a function of fluence

CNM W5 - 50 micron

Pulse shape in irradiated sensors

With irradiation the signal changes: it becomes shorter and steeper

- ▷ Weightfield2 is a rather easy to use simulator for silicon sensors
- ▷ It can help the user's intuition in deciding the best solutions
- ▷ It is fully configurable by the user

Acknowledgements

This research was carried out with the contribution of the Ministero degli Affari Esteri, "Direzione Generale per la Promozione del Sistema Paese" of Italy

Ministere degli Affari Esteri e della CooperazioneInternazionale

DIREZIONE GENERALE PER LA PROMOZIONE DEL SISTEMA PAESE Unità per la cooperazione scientifica <u>e</u> tecnologica bilaterale e multilaterale

This work is supported by:

- ▷ Horizon 2020, grant UFSD669529
- ▷ Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- ▷ Ministero della Ricerca, Italia, FARE, R165xr8frt_fare
- ▷ INFN CSN5