

Optimisation de détecteurs cryogéniques semi-conducteurs pour le CEvNS et la matière noire

Journées réseau détecteurs semi-conducteurs 2021, IP2I

Jules Colas, Doctorant Encadrant: Julien Billard Présentation largement inspirée de la thèse de **Dimitri Misiak** Merci à lui!

Sommaire

- → Contexte
- → Modélisation des détecteurs
- → Optimisation par la simulation
- → Confrontation simulations / mesures
- → Conclusion

Un détecteur = "Une cible cristalline instrumentée"

Mesurer les infimes variations d'énergie dans le matériaux cible

- Rechercher de nouvelles particules (DM, new bosons, ...)
- Mesurer les fonds radioactifs

Deux "modes de fonctionnements"

Deux "modes de fonctionnements"

Modélisation "chaleur"

Modèle phénoménologique (voie chaleur)

Modèle phénoménologique (voie chaleur)

Thermal Bath

Crystal Target

Résolution de 17eV démontrée sur 32g E.Armengaud et al., Phys. Rev. D 99, 082003 (2019)

22eV en moyenne pour 38g

Très proche du cahier des charges de RICOCHET (~10eV)

Et pour l'ionisation ???

Discrimination ER/NR Double mesure chaleur/ionisation Limitée à 1keV ...

Discrimination à 200 eV

Nécessite une résolution ionisation de 20 eV Optimisation de la collection de charge.

- l) Capa < 20pF
- Electronique bas bruit HEMT (A. Juillard, J-B. Filippini)
- 3) Large volume fiduciel
- 4) Rejet des événements de surface (?)

Discrimination ER/NR
Double mesure chaleur/ionisation

Limitée à 1keV ...

Simulations COMSOL (Électrostatique)

- Simulation du design des électrodes
- Validation avec des données exp.

Modélisation des électrodes

Modèle électrostatique

$$\begin{cases} \vec{\nabla} \cdot (\epsilon_{0r} \vec{E}) = \rho_f \\ \vec{E} = -\vec{\nabla} V \end{cases}$$

Modèle de capacité pour les électrodes

Condensateur simple

$$Q = CV \Leftrightarrow V = \frac{Q}{C}$$

Détecteur FID

- 4 électrodes + chassis (GND)
- Plusieurs potentiels
- Matrice de capacité de Maxwell C

$$ec{Q} = egin{pmatrix} Q_A \ Q_B \ Q_C \ Q_D \end{pmatrix} \quad ext{and} \quad ec{V} = egin{pmatrix} V_A \ V_B \ V_C \ V_D \end{pmatrix}$$

$$\vec{Q} = C \vec{V} \quad \Leftrightarrow \quad \vec{V} = C^{-1} \vec{Q}$$

$$C = \begin{pmatrix} C_{AA} & C_{AB} & C_{AC} & C_{AD} \\ C_{BA} & C_{BB} & C_{BC} & C_{BD} \\ C_{CA} & C_{CB} & C_{CC} & C_{CD} \\ C_{DA} & C_{DB} & C_{DC} & C_{DD} \end{pmatrix}$$

Modèle de capacité pour les électrodes

Conséquence directe

Une charge collectée sur une électrode induit une tension sur toutes les électrodes du détecteur

Détecteur FID

- 4 électrodes + chassis (GND)
- Plusieurs potentiels
- Matrice de capacité de Maxwell C

$$ec{Q} = egin{pmatrix} Q_A \ Q_B \ Q_C \ Q_D \end{pmatrix} \quad ext{and} \quad ec{V} = egin{pmatrix} V_A \ V_B \ V_C \ V_D \end{pmatrix}$$

$$\vec{Q} = C \vec{V} \quad \Leftrightarrow \quad \vec{V} = C^{-1} \vec{Q}$$

$$C = \begin{pmatrix} C_{AA} & C_{AB} & C_{AC} & C_{AD} \\ C_{BA} & C_{BB} & C_{BC} & C_{BD} \\ C_{CA} & C_{CB} & C_{CC} & C_{CD} \\ C_{DA} & C_{DB} & C_{DC} & C_{DD} \end{pmatrix}$$

Modèle de corrélation des bruit

Propagation des bruits réalisée grâce au package Python Lcapy

10 à 20% d'impact sur le bruit total d'une électrode par rapport à si elle était seule

Il faut les capacités mutuelles! → COMSOL nous les donne

Simulation et optimisation

Deux designs différents : PLanaire et FID

PL38: 2 Planar electrodes extended over the corners on the lateral surface

- High fiducial volume
- ⊕ Low capacitance
- No surface event rejection

3 Geometry parameters + 2 Polarization parameters

Deux designs différents : PLanaire et FID

PL38: 2 Planar electrodes extended over the corners on the lateral surface

- High fiducial volume
- ⊕ Low capacitance

3 Geometry parameters + 2 Polarization parameters

Analyse paramétrique

Exemples

Effet de la distance au châssis : d_{Cu}

23

Effet de la taille du recouvrement latéral : L_{Lat}

En augmentant la distance $L_{\rm Lat}$

- C augmente
- ♦ E diminue aux angles
- Moins de lignes de champs quittent le cristal (meilleure conservation de charge!)

Valeur retenue : L_{1 at} = 2 mm

Effet de la densité d'anneaux : (n_{Plan}, n_{Lat})

En augmentant le nombre d'anneaux

- C augmente
- Volume fiduciel augmente
- Champ E plus intense (aux bords)

Valeur retenue : $(n_{Plan}, n_{Lat}) = (7, 2)$

Designs optimisés PL38 et FID38

 r_{center}

 R_{Ge} A Top Veto Electrode

B Top Collect Electrode

C Bottom Veto Electrode

D. Bottom Collect Flectrode

 w_{bare}

PL38 performances:

- ER/NR discrimination : YES
- Surface event rejection: NO
- Fiducial volume: 99.2%
- 99% of volume: E>0.9V/cm
- Capacitance matrix terms < 20pF

$$C = \begin{pmatrix} C_{AA} & C_{AB} \\ C_{BA} & C_{BB} \end{pmatrix} = \begin{pmatrix} 14.92 & -10.86 \\ -10.86 & 14.92 \end{pmatrix} \text{ pF}$$

FID38 performances:

- ER/NR discrimination : YES
- Surface event rejection: YES
- Fiducial volume: 70%
- 99% of volume: E>0.2V/cm
- Capacitance matrix terms < 20pF

$$C = \begin{pmatrix} C_{AA} & C_{AB} & C_{AC} & C_{AD} \\ C_{BA} & C_{BB} & C_{BC} & C_{BD} \\ C_{CA} & C_{CB} & C_{CC} & C_{CD} \\ C_{DA} & C_{DB} & C_{DC} & C_{DD} \end{pmatrix} = \begin{pmatrix} 18.25 & -10.19 & -4.02 & -2.58 \\ -10.19 & 15.94 & -2.58 & -1.98 \\ -4.02 & -2.58 & 18.25 & -10.19 \\ -2.58 & -1.98 & -10.19 & 15.94 \end{pmatrix} \text{ pF}$$

Confrontation expériences / simulations

Résultats des designs optimisés

<u>FID38</u>

RED140 RED150

Conclusion

- Les simulations COMSOL sont devenues indispensables pour la caractérisation et la modélisation de nos détecteurs.
- Elles ont permis de fabriquer différents designs optimisés pour nos besoins scientifiques.
- Les premières mesures expérimentales sont en accord avec les simulations.
- Les designs optimisés sont en cours d'analyse.

Merci de votre attention

Avez-vous des questions ?

Modèle phénoménologique (voie chaleur)

L'effet Luke-Neganov : les charges produisent des phonons.

peut être vu comme la contribution d'un "effet joule" des charges accélérées dans le cristal

Bilan voie chaleur

- → Bonne compréhension phénoménologique!
- → Prototype RED20
 - Résolution = 17eV
 - ◆ EDELWEISS-Surf
 - ◆ Calibration avec ⁵⁵Fe

