

Journées thématiques du Réseau Semi-conducteurs IN2P3-IRFU. Méthodes de test orientées simulation

Radiation Damage Effects: Characterization Techniques and Numerical Modelling

<u>A. Morozzi</u>⁽¹⁾, F. Moscatelli^(1,2), T. Croci^(1,3), D. Passeri^(1,3)

(1) INFN of Perugia, Perugia, Italy
 (2) CNR-IOM, Perugia, Italy
 (3) Eng. Department - University of Perugia, Perugia, Italy

Outline

- > Motivation / Radiation damage effects in silicon sensors
- > TCAD radiation damage modelling approach.
- > **Surface damage effects**: Simulations vs. Measurements
 - □ Test structures / measurements and parameters extraction.
 - □ DC (steady-state)
- -> Diodes / Gate Controlled Diodes.
- □ AC (small-signals) -> MOS Capacitors.
- > "New Perugia model" Comprehensive Bulk + Surface TCAD damage modelling scheme
 - □ Leakage current.
 - □ Electric field profile.
 - □ Charge Collection Efficiency.
 - □ Model Application in the prediction of complex devices behavior (e.g. LGAD).

Outline

- > Motivation / Radiation damage effects in silicon sensors
- > TCAD radiation damage modelling approach.
- > **Surface damage effects**: Simulations vs. Measurements
 - □ Test structures / measurements and parameters extraction.
 - DC (steady-state) -> Diodes / Gate Controlled Diodes.
 - □ AC (small-signals) -> MOS Capacitors.
- > "New Perugia model" Comprehensive Bulk + Surface TCAD damage modelling scheme
 - □ Leakage current.
 - □ Electric field profile.
 - □ Charge Collection Efficiency.
 - □ Model Application in the prediction of complex devices behavior (e.g. LGAD).

Motivations

- \checkmark Given the expected radiation levels at future collider experiments, the radiation-tolerance of the detectors is of the utmost importance. Need of numerical models to predict the behavior of heavily irradiated devices.
- \checkmark Modern TCAD simulation tools⁽¹⁾ at device/circuit level offer a wide variety of approaches, characterized by different combinations among physical accuracy and comprehensiveness, application versatility and computational demand.
- \checkmark A number of different physical damage mechanisms actually may interact in a non-trivial way. Deep understanding of physical device behavior therefore has the utmost importance, and device analysis tools may help to this purpose.
- ✓ Bulk and surface radiation damage have been considered by means of the introduction of deep level radiation induced traps whose parameters are physically meaningful and whose experimental characterization is feasible.
- \checkmark Within a hierarchical approach, increasingly complex models have been considered, aiming at balancing complexity and comprehensiveness.
- (1) Sentaurus Device SYNOPSYS*

Radiation damage effects

Two main types of radiation damage in detector materials:

- ✓ SURFACE damage ← Ionizing Energy Loss (IEL)
 - build-up of trapped charge within the oxide;
 - bulk oxide traps increase;
 - interface traps increase;
 - $Q_{OX'} N_{IT}$.
- ✓ BULK damage ← Non-Ionizing Energy Loss (NIEL)
 - silicon lattice defect generations;
 - point and cluster defects;
 - deep-level trap states increase;
 - change of effective doping concentration;
 - N_T.

Outline

- > Motivation / Radiation damage effects in silicon sensors
- > TCAD radiation damage modelling approach.
- > **Surface damage effects**: Simulations vs. Measurements
 - □ Test structures / measurements and parameters extraction.
 - DC (steady-state) -> Diodes / Gate Controlled Diodes.
 - □ AC (small-signals) -> MOS Capacitors.
- > "New Perugia model" Comprehensive Bulk + Surface TCAD damage modelling scheme
 - □ Leakage current,
 - □ Electric field profile,
 - Charge Collection Efficiency
 - □ Model Application in the prediction of complex devices behavior (e.g. LGAD)

The Technology-CAD modelling approach

- ✓ TCAD simulation tools solve fundamental, physical partial differential equations, such as diffusion and transport equations for discretized geometries (finite element meshing).
- $\checkmark\,$ This deep physical approach gives TCAD simulation predictive accuracy.
- ✓ Synopsys[©] Sentaurus TCAD

$$\begin{aligned} \nabla \cdot (-\varepsilon_s \nabla \varphi) &= q \left(N_D^+ - N_A^- + p - n \right) & \text{Po} \\ \frac{\partial n}{\partial t} - \frac{1}{q} \nabla \cdot \vec{J}_n &= G - R & \text{Elec} \\ \frac{\partial p}{\partial t} + \frac{1}{q} \nabla \cdot \vec{J}_p &= G - R & \text{Ho} \\ \vec{J}_n &= -q \mu_n n \nabla \varphi + q D_n \nabla n \\ \vec{J}_p &= -q \mu_p p \nabla \varphi - q D_p \nabla p \end{aligned}$$

Poisson

Electron continuity

7/33

Hole continuity

Outline

- > Motivation / Radiation damage effects in silicon sensors
- > TCAD radiation damage modelling approach.

> **Surface damage effects**: Simulations vs. Measurements

- □ Test structures / measurements and parameters extraction.
 - DC (steady-state) -> Diodes / Gate Controlled Diodes.
- □ AC (small-signals) -> MOS Capacitors.
- > "New Perugia model" Comprehensive Bulk + Surface TCAD damage modelling scheme
 - □ Leakage current,
 - □ Electric field profile,
 - □ Charge Collection Efficiency
 - □ Model Application in the prediction of complex devices behavior (e.g. LGAD)

The main test structures at hand

 ✓ different processes and thermal budget / p-stop or p-spray isolation options.

$\checkmark\,$ Measurements: I-V, C-V, $R_{\rm INT}$

Parameter extraction procedure

- $\checkmark~$ From C-V measurements of MOS capacitors:
 - D_{IT} is assessed by using the C-V High-Low method.
 - High-Frequency (HF) measurements are carried out at 100 kHz with a small signal amplitude of 25 mV.
 - Quasi-Static (QS) characteristics measured with delay times of 0.5 sec using a voltage step of 100 mV.
 - N_{EFF} is obtained from V_{FB} measurements.

$$C_{IT} = \left(\frac{1}{C_{LF}} - \frac{1}{C_{OX}}\right)^{-1} - \left(\frac{1}{C_{HF}} - \frac{1}{C_{OX}}\right)^{-1}$$
$$D_{IT} = \frac{C_{IT}}{q \times A}$$
$$N_{IT} = D_{IT} \frac{E_g}{2}$$

Donor interface trap states (*p*-type subs)

Acceptor interface trap states (*n*-type subs)

Parameter extraction procedure

- $\checkmark~$ From C-V measurements of MOS capacitors:
 - D_{IT} is assessed by using the C-V High-Low method.
 - High-Frequency (HF) measurements are carried out at 100 kHz with a small signal amplitude of 25 mV.
 - Quasi-Static (QS) characteristics measured with delay times of 0.5 sec using a voltage step of 100 mV.
 - N_{EFF} is obtained from V_{FB} measurements.
- \checkmark From I-V measurements of MOSFETs:
 - After X-ray irradiation $\rightarrow \Delta V_{th}(V_{FB}) = \Delta V_{N_{it}} + \Delta V_{Q_{ox}}$
 - ΔV_{th} is due to two contributions ascribed to N_{IT} and Q_{OX} , which can evaluated from $I_{DS} - VGS$ of MOSFETs using the method proposed in [1].

[1] P. J. McWhorter and P. S. Winokur, Appl. Phys. Lett. 48, 133 (1986).

IFX test structures wrap-up

- $\sqrt{}$ Noticeable differences among three processes in terms of N_{EFF} and N_{IT} (process variability).
- \checkmark Higher differences at lower doses.

HPK test structures wrap-up

- \checkmark Reduced variability due to different technology options in terms of radiation hardness.
- \checkmark Similar values of N_{EFF} and N_{IT} for HPK devices with different p-stop/p-spray isolation structures.

The overall modelling approach pursued

INFN

arianna.morozzi@pg.infn.it

14/33

Development of TCAD surface radiation model

Development of TCAD surface radiation model

arianna.morozzi@pg.infn.it

Development of TCAD surface radiation model

Outline

- > Motivation / Radiation damage effects in silicon sensors
- > TCAD radiation damage modelling approach.

> Surface damage effects: Simulations vs. Measurements

- □ Test structures / measurements and parameters extraction.
- □ DC (steady-state)
- -> Diodes / Gate Controlled Diodes.
- □ AC (small-signals)
- -> MOS Capacitors.
- > "New Perugia model" Comprehensive Bulk + Surface TCAD damage modelling scheme
 - □ Leakage current,
 - □ Electric field profile,
 - □ Charge Collection Efficiency
 - □ Model Application in the prediction of complex devices behavior (e.g. LGAD)

Surface model validation: IFX MOS Capacitors

arianna.morozzi@pg.infn.it

Surface model validation: HPK MOS Capacitors

Surface model validation: HPK Gated Diodes

stituto Nacionale di Fisica Nach

Surface model validation: Interstrip resistance

Outline

- > Motivation / Radiation damage effects in silicon sensors
- > TCAD radiation damage modelling approach.
- > **Surface damage effects**: Simulations vs. Measurements
 - □ Test structures / measurements and parameters extraction.
 - DC (steady-state) -> Diodes / Gate Controlled Diodes.
 - □ AC (small-signals) -> MOS Capacitors.
- > "New Perugia model" Comprehensive Bulk + Surface TCAD damage modelling scheme
 - □ Leakage current,
 - □ Electric field profile,
 - □ Charge Collection Efficiency
 - □ Model Application in the prediction of complex devices behavior (e.g. LGAD)

The "New Perugia" model

$\sqrt{}$ Surface damage (+ Q_{OX})

Туре	Energy (eV)	Band width (eV)	Conc. (cm ⁻²)
Acceptor	$E_{C} \le E_{T} \le E_{C}$ -0.56	0.56	$D_{IT} = D_{IT}(\Phi)$
Donor	$E_V \le E_T \le E_V + 0.6$	0.60	$D_{IT} = D_{IT}(\Phi)$

$\sqrt{}$ Bulk damage

Туре	Energy (eV)	η (cm⁻¹)	σ _n (cm²)	σ _h (cm²)
Donor	E _c - 0.23	0.006	2.3×10 ⁻¹⁴	2.3×10 ⁻¹⁵
Acceptor	E _c - 0.42	1.6	1×10 ⁻¹⁵	1×10 ⁻¹⁴
Acceptor	E _c - 0.46	0.9	7×10 ⁻¹⁴	7×10 ⁻¹³

Leakage current vs fluence

- ✓ Leakage current measured/simulated at -20°C and scaled to +20°C [3].
- p-type susbstrate devices.
- Leakage current over a detector volume is proportional to the fluence with a proportionality factor α :
 - MEASUREMENTS:
 α ~ 4÷7x10⁻¹⁷A/cm³
 depending on the annealing time/temperature [4].
 - ✓ SIMULATIONS: α = 5.4x10⁻¹⁷A/cm³.

[3] A. Chilingarov, Generation current temperature scaling, RD50 technical note.

[4] A. Dierlamm, KIT Status, CMS Outer tracker Meeting, March 2019.

The "New Perugia" model

	5 (0//		
Туре	Energy (eV)	Band width (eV)	Conc. (cm⁻²)
Acceptor	$E_{C} \leq E_{T} \leq E_{C}$ -0.56	0.56	$D_{IT} = D_{IT}(\Phi)$
Donor	$E_V \le E_T \le E_V + 0.6$	0.60	$D_{IT} = D_{IT}(\Phi)$

Surface damage $(+ O_{ox})$

- ✓ Traps concentrations dependence upon fluences ~ $\eta × \phi$.
- \checkmark Strong sensitivity to the introduction rate (defects concentration).
- ✓ @ $1.0 \times 10^{16} n_{eq}/cm^2$.

 $\sqrt{}$

Туре	Energy (eV)	η (cm ⁻¹)	σ _n (cm²)	σ _h (cm ²)
Donor	E _c - 0.23	0.006	2.3×10 ⁻¹⁴	2.3×10 ⁻¹⁵
Acceptor	E _c - 0.42	1.6	1×10 ⁻¹⁵	1×10 ⁻¹⁴
Acceptor	E _c - 0.46	0.9	7×10 ⁻¹⁴	7×10 ⁻¹³

The "New Perugia" model

 $\sqrt{}$ Surface damage (+ Q_{OX})

Туре	Energy (eV)	Band width (eV)	Conc. (cm ⁻²)
Acceptor	$E_{C} \le E_{T} \le E_{C}$ -0.56	0.56	$D_{IT} = D_{IT}(\Phi)$
Donor	$E_V \le E_T \le E_V + 0.6$	0.60	$D_{IT} = D_{IT}(\Phi)$

Stimulus (MIP equivalent)

Segmented sensors.

- Measurements at 3 laser intensity
- Reference diode to check laser stability

LGAD - Low Gain Avalanche Diode

✓ Layout and doping profile.

Gaussian Gain Layer profile

LGAD - I-V and C-V characterization (1/2)

✓ Comparison between measurements and simulations of not irradiated LGADs.

Avalanche model: Massey. Temp: 300 K. Electrical contact area 1 mm².

LGAD - I-V and C-V characterization (2/2)

✓ Comparison between measurements and simulations of not irradiated LGADs.

Avalanche model: Massey. Temp: 253 K for I-V (Chilingarov's formula [3]), 300 K for C-V. Electrical contact area 1 mm².

LGAD – Gain calculation

- ✓ Estimated error on data $\pm 10\%$.
- \checkmark Collected Charge (CC) as the integral of the current over time.

$$Gain = \frac{CC_{LGAD}}{CC_{PiN}}$$

Conclusions

- \checkmark Modelling radiation damage effects is a tough task!
- \checkmark Surface radiation damage effects modelling scheme.
 - $\sqrt{}$ Validated up to doses of 100 Mrad(SiO₂).
 - \checkmark Different test structures / different technology (HPK, IFX, ...).
- \checkmark "University of Perugia Model" \rightarrow "New Perugia Model"
 - $\sqrt{}$ TCAD general purpose BULK + SURFACE radiation effects modelling scheme.
 - \checkmark Predictive capabilities extended up to ~10¹⁶ particles/cm².
 - \checkmark suitable for commercial TCAD tools (e.g. Synopsys Sentaurus).
 - \checkmark Validation with experimental data comparisons (I-V, C-V, Efield, CCE, ...).
 - \checkmark Application to the optimization of advanced (pixel) detectors (3D detectors, LGADs, ...)
 - ✓ Increasing significance of surface/interface related radiation damage effects for future e+/ecolliders...
 - \checkmark ... becoming more relevant if sensitive parts of the sensor chip are placed underneath or close to oxide layers (e.g. in LGAD and HV-CMOS sensors).

