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Outline
 Motivation / Radiation damage effects in silicon sensors

 TCAD radiation damage modelling approach.

 Surface damage effects: Simulations vs. Measurements
 Test structures / measurements and parameters extraction.
 DC (steady-state) -> Diodes / Gate Controlled Diodes.
 AC (small-signals) -> MOS Capacitors.

 “New Perugia model” - Comprehensive Bulk + Surface TCAD damage modelling scheme
 Leakage current. 
 Electric field profile. 
 Charge Collection Efficiency.
 Model Application in the prediction of complex devices behavior (e.g. LGAD).
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Motivations
√ Given the expected radiation levels at future collider experiments, the radiation-tolerance of the 

detectors is of the utmost importance. Need of numerical models to predict the behavior of heavily 
irradiated devices. 

√ Modern TCAD simulation tools(1) at device/circuit level offer a wide variety of approaches, 
characterized by different combinations among physical accuracy and comprehensiveness, 
application versatility and computational demand.

√ A number of different physical damage mechanisms actually may interact in a non-trivial way. 
Deep understanding of physical device behavior therefore has the utmost importance, 
and device analysis tools may help to this purpose.

√ Bulk and surface radiation damage have been considered by means of the introduction of deep level 
radiation induced traps whose parameters are physically meaningful and whose experimental 
characterization is feasible. 

√ Within a hierarchical approach, increasingly complex models have been considered, 
aiming at balancing complexity and comprehensiveness.

(1) Sentaurus Device
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Radiation damage effects
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Two main types of radiation damage in detector materials:

√ SURFACE damage  Ionizing Energy Loss (IEL)
- build-up of trapped charge within the oxide;
- bulk oxide traps increase;
- interface traps increase;
- QOX, NIT.

√ BULK damage  Non-Ionizing Energy Loss (NIEL)
- silicon lattice defect generations; 
- point and cluster defects;
- deep-level trap states increase;
- change of effective doping concentration;
- NT.
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The Technology-CAD modelling approach

Process 
Simulations

Structure 
editing

Layout 
Design

Device-level
Circuit-level
simulations

Sentaurus Workbench Framework √ TCAD simulation tools solve fundamental, physical 
partial differential equations, such as diffusion and
transport equations for discretized geometries (finite 
element meshing). 

√ This deep physical approach gives TCAD simulation 
predictive accuracy.

 Synopsys© Sentaurus TCAD

Electron continuity

Hole continuity

Poisson
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The main test structures at hand
√ Test structures…

MOS
Capacitor

Cap-TS
for RINT

Gated
Diode

IFX p-type ddFZ 8’’

IFX p-type ddFZ 6’’ HPK p-type ddFZ

√ Measurements: I-V, C-V, RINT

√ X-ray irradiation in Padova (IT).
√ Dose range: 0.05 ÷ 100 Mrad(SiO2).
√ Dose rate: 0.8 Mrad/hour.
√ Measurements after irradiation / 

annealing at 80°C for 10 min.
√ different processes and thermal budget /

p-stop or p-spray isolation options.
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Parameter extraction procedure
√ From C-V measurements of MOS capacitors:

• 𝐷𝐷𝐼𝐼𝐼𝐼 is assessed by using the C-V High-Low method.
• High-Frequency (HF) measurements are carried out at 100 

kHz with a small signal amplitude of 25 mV. 
• Quasi-Static (QS) characteristics measured with delay times 

of 0.5 sec using a voltage step of 100 mV. 
• 𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸 is obtained from 𝑉𝑉𝐸𝐸𝐹𝐹 measurements.

Donor interface trap states (𝑝𝑝-type subs)

Acceptor interface trap states (𝑛𝑛-type subs)

DIT =
CIT

q × A

NIT = 𝐷𝐷𝐼𝐼𝐼𝐼
Eg
2

CIT =
1
𝐶𝐶𝐿𝐿𝐿𝐿

−
1
𝐶𝐶𝑂𝑂𝑂𝑂

−1

−
1
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−
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Parameter extraction procedure
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• High-Frequency (HF) measurements are carried out at 100 

kHz with a small signal amplitude of 25 mV. 
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of 0.5 sec using a voltage step of 100 mV. 
• 𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸 is obtained from 𝑉𝑉𝐸𝐸𝐹𝐹 measurements.

∆𝑉𝑉𝑡𝑡𝑡(𝑉𝑉𝐸𝐸𝐹𝐹) = ∆𝑉𝑉𝑁𝑁𝑖𝑖𝑖𝑖 + ∆𝑉𝑉𝑄𝑄𝑜𝑜𝑜𝑜

√ From I-V measurements of MOSFETs:
• After X-ray irradiation →
• Δ𝑉𝑉𝑡𝑡𝑡 is due to two contributions ascribed to 𝑁𝑁𝐼𝐼𝐼𝐼

and 𝑄𝑄𝑂𝑂𝑂𝑂, which can evaluated from 𝐼𝐼𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑉𝑉𝐷𝐷 of 
MOSFETs using the method proposed in [1].
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[1] P. J. McWhorter and P. S. Winokur, Appl. Phys. Lett. 48, 133 (1986).
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IFX test structures wrap-up
√ Noticeable differences among three processes in terms of NEFF and NIT (process variability).
√ Higher differences at lower doses.

12

6” process
8” 2nd process

8” 1st process
8” 2nd process
6” process

8” 1st process
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HPK test structures wrap-up
√ Reduced variability due to different technology options in terms of radiation hardness.
√ Similar values of NEFF and NIT for HPK devices with different p-stop/p-spray isolation structures.

13
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The overall modelling approach pursued

DETECTOR 
OPTIMIZATION

√ Modelling the effects of the radiation damage.
√ Predictive insight of the behaviour of detectors, 

aiming at their performance optimization.

TEST STRUCTURE
MEASUREMENTS

MODEL

MODEL 
VALIDATION

CCE, I-V, C-V, …

PARAMETERS 
EXTRACTION

14
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ΔNITACC (ϕ) 

15

Development of TCAD surface radiation model 

DIT

NIT

INPUT OUTPUT
HPK pspray/pstop

QOX(ϕ)

NITDON (ϕ) 

𝑄𝑄𝑂𝑂𝑂𝑂(ϕ) = 𝑄𝑄𝑂𝑂𝑂𝑂(0)+∆𝑄𝑄𝑂𝑂𝑂𝑂(ϕ)
𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(ϕ) = 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(0)+∆𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(ϕ)
𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(ϕ) = 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(0)+∆𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(ϕ)



A. Morozzi et al., June 10, 2021 arianna.morozzi@pg.infn.it /3316
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Development of TCAD surface radiation model 

DIT

NIT

INPUT OUTPUT
IFX 6” process

ΔNITACC (ϕ) 

QOX(ϕ)

NITDON (ϕ) 
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Surface model validation: IFX MOS Capacitors

6” process.

Measurements
Simulations

8” process.

A

A’

contact

p-type

SiO2

240 μm

19

√ MOS capacitors characterization as a function of VGATE.
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Surface model validation: HPK MOS Capacitors

p-stop process.

240 μm

p-spray process.

Measurements
Simulations

20

240 μm

√ MOS capacitors characterization as a function of VGATE.
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Surface model validation: HPK Gated Diodes

√ p-stop

√ p-spray

𝑠𝑠0 =
𝜋𝜋
2
𝜎𝜎𝑠𝑠𝑣𝑣𝑡𝑡𝑡𝐷𝐷𝑖𝑖𝑡𝑡𝑘𝑘𝐵𝐵𝐼𝐼

 I-V characteristics as a function of VGATE.
 From I-V measurements the surface 

velocity s0 was evaluated as a function of 
the dose.

𝑠𝑠0 =
𝐼𝐼𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
𝑛𝑛𝑖𝑖𝑞𝑞𝐴𝐴𝐺𝐺

Measurements
Simulations

21

√ Gated 
Dioddes
(HPK, 
IFX)

Isurf
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Surface model validation: Interstrip resistance
√ RINT measurements.
√ HPK p-stop implant isolation.

Measurements
Simulations

22
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The “New Perugia” model

√ Surface damage (+ QOX)

√ Bulk damage

24
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Leakage current vs fluence
 Leakage current measured/simulated 

at -20°C and scaled to +20°C [3].

 p-type susbstrate devices.

 Leakage current over a detector volume 
is proportional to the fluence with a 
proportionality factor α :
 MEASUREMENTS: 

α ~ 4÷7x10-17A/cm3

depending on the annealing 
time/temperature [4].

 SIMULATIONS: 
α = 5.4x10-17A/cm3.

[3] A. Chilingarov,  Generation current temperature scaling, RD50 technical note.

[4] A. Dierlamm, KIT Status, CMS Outer tracker Meeting, March 2019.

×1015

eqV
I
Φ⋅
∆

=α

25
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The “New Perugia” model

√ Surface damage (+ QOX)

√ Bulk damage

 Traps concentrations dependence upon fluences ~ η × ϕ.

 Strong sensitivity to the introduction rate (defects concentration).

 @ 1.0×1016 neq/cm2.

η

26

η>>η<<)
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The “New Perugia” model

√ Surface damage (+ QOX)

√ Bulk damage

 Segmented sensors. 

 Stimulus (MIP equivalent)

27
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The “New Perugia” model

√ Surface damage (+ QOX)

√ Bulk damage

F. Moscatelli et al., Effects of Interface Donor Trap States on Isolation 
Properties of Detectors Operating at High-Luminosity LHC, IEEE Transactions 
on Nuclear Science, 2017, Vol. 64, Issue: 8, 2259 – 2267.

Charge Collection for silicon strips.

[2] A. Affolder et al., NIMA Vol. 623 (2010), pp. 177-179.

Charge Collection for PiN diodes.

M. Ferrero, 34th RD50 Workshop, June 12-14 2019

[2] 
[2] 

28
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LGAD - Low Gain Avalanche Diode
 Layout and doping profile.

p Epitaxial

Gaussian Gain Layer profile

ϕ
p Epitaxial
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LGAD - I-V and C-V characterization (1/2)
 Comparison between measurements and simulations of not irradiated LGADs. 

Avalanche model: Massey. Temp: 300 K. Electrical contact area 1 mm2.

I-V, not irradiated C-V, not irradiated

Simul.
Meas.

Simul.
Meas.
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LGAD - I-V and C-V characterization (2/2)

Avalanche model: Massey. Temp: 253 K for I-V (Chilingarov’s formula [3]), 300 K for C-V. Electrical contact area 1 mm2.

 Comparison between measurements and simulations of not irradiated LGADs. 

I-V at different fluences C-V, at different fluences
Simul.
Simul.
Simul.
Simul.
Simul.
Meas.

Meas.
Meas.
Meas.

Meas.
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LGAD – Gain calculation
 Estimated error on data ±10%.

 Collected Charge (CC) as the integral of the current over time.

Not irradiated Fluence 1.5e15 neq/cm2

Avalanche model: Massey. Temp: 300 K. Electrical contact area 1 mm2.

𝑉𝑉𝐺𝐺𝐺𝐺𝑛𝑛 =
𝐶𝐶𝐶𝐶𝐿𝐿𝐺𝐺𝐿𝐿𝐿𝐿
𝐶𝐶𝐶𝐶𝑃𝑃𝑖𝑖𝑁𝑁
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Conclusions
√ Modelling radiation damage effects is a tough task!

√ Surface radiation damage effects modelling scheme.
√ Validated up to doses of 100 Mrad(SiO2).
√ Different test structures / different technology (HPK, IFX, …).

√ “University of Perugia Model”  “New Perugia Model”
√ TCAD general purpose BULK + SURFACE radiation effects modelling scheme.
√ Predictive capabilities extended up to ~1016 particles/cm2.
√ suitable for commercial TCAD tools (e.g. Synopsys Sentaurus).  
√ Validation with experimental data comparisons (I-V, C-V, Efield, CCE, …).

√ Application to the optimization of advanced (pixel) detectors (3D detectors, LGADs, …)
√ Increasing significance of surface/interface related radiation damage effects for future e+/e-

colliders…
√ … becoming more relevant if sensitive parts of the sensor chip are placed underneath or close to 

oxide layers (e.g. in LGAD and HV-CMOS sensors).
33
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