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Radiation induced defects

M.Moll - Defect Characterization - 10 June 2021 - IP2I Lyon 2



….. a wide range of point defects 

Displacement Damage

• example of point defect reactions:

V: V+O → VO; V+P →VP

I: I+CS → Ci → Ci + O →CiOi

I+BS → Bi → Bi + O →BiOi

… many more reactions!
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Can we see the defects?
HRTEM on Si: n-irradiated 1019 neq/cm2

High Resolution Transmission Electron Microscopy
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https://arxiv.org/abs/2102.06537


Defect Characterization
• Aim of defect studies:

• Identify defects responsible for Change of Neff ,
Change of E-Field, Trapping, Leakage Current

• Understand if knowledge can be used to mitigate 
radiation damage (e.g. defect engineering)

• Deliver input for device simulations to predict 
detector performance under various conditions

• Defect Characterization performed with various tools:
• DLTS (Deep Level Transient Spectroscopy)
• TSC (Thermally Stimulated Currents)
• PITS (Photo Induced Transient Spectroscopy)
• FTIR (Fourier Transform Infrared Spectroscopy)
• EPR (Electron Paramagnetic Resonance)
• TCT (Transient Current Technique)
• CV/IV (Capacitance/Current-Voltage Measurement)
• MW-PC (Microwave Probed Photo Conductivity)
• PC, PL, I-DLTS, TEM,… and simulations

• RD50: several hundred samples irradiated with protons, neutrons, electrons, 60Co-g

M.Moll - Defect Characterization - 10 June 2021 - IP2I Lyon 4

space charge    trapping leakage current

[E
.F

re
tw

u
rs

t
e

t 
a

l.
 –

R
D

5
0

 N
o

v.
2

0
1

8
]



-
0

Silicon Point Defects: The V-O defect (A center)

• V-O defect (A centre)
The dominant centres for vacancy capture in high purity silicon is the 

isolated oxygen interstitial Oi. Trapping of the vacancy results in the 

V-O centre, the so called A-centre.
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• Silicon crystal
• diamond lattice structure

• FCC: Face Centered Cubic 
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Structure:

Electrical activity:

The A center has an acceptor

level in the upper half of the

band gap

EA =0.18eV

Ev

Ec
V-O



Silicon Point Defects: The Divacancy V2
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• Point defects can involve more than one vacancy

• V2, V3, V2O, V2O2 ….are well characterized defects
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• Electrical activity of the V2

• The divacancy has has two acceptor levels  

in the upper half of the band gap and a 

donor level in the lower half of the band gap.

Divacancy V2
two missing 

silicon atoms

V2O
two missing 

silicon atoms

+one oxygen atom
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Defect Characterization Techniques

M.Moll - Defect Characterization - 10 June 2021 - IP2I Lyon 7



Ci

Deep Level Transient Spectroscopy
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Example: n-type FZ silicon sensor irradiated with MeV neutrons
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DLTS spectra 

recorded during annealing 

at room temperature

• Introduction rates of main defects  1 cm-1

• Introduction rate of negative space charge  0.05 cm-1

CiOi

CiCs

Carbon interstitial (Ci)

defect kinetics clearly visible:



DLTS (Deep Level Transient Spectroscopy): Operation principle

• Assumption: Defect is an electron trap in n-type silicon, i.e. a majority carrier trap 
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Measurement cycle at fixed T

[1] reverse bias VR

• junction under reverse bias

• defect states are not occupied 

[2] injection pulse VP

• reduction of reverse bias

• injection of majority carriers

• occupation of defect levels

[3] reverse bias VR

• junction under reverse bias

• thermal emission of carriers
• expansion of  depletion zone

• decrease of capacitance



DLTS (Deep Level Transient Spectroscopy): Operation principle

(a) majority carrier injection

(electrons in n-type silicon)

electron trap

M.Moll - Defect Characterization - 10 June 2021 - IP2I Lyon 10

Measurement cycle at fixed T

[1] reverse bias VR

• junction under reverse bias

• defect states are not occupied 

[2] injection pulse VP

• (a) reduction of reverse bias
• injection of majority carriers

or
• (b) forward bias

• injection of 
minority &majority carriers

[3] reverse bias VR

• junction under reverse bias

• thermal emission of carriers
• expansion of  depletion zone

• change of capacitance

(b) high injection (n ≈ p)

(electrons and holes injected)

hole trap with cp >> cn



DLTS (Deep Level Transient Spectroscopy): Operation principle

(a) majority carrier injection

(electrons in n-type silicon)

electron trap
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[3] reverse bias VR

• junction under reverse bias

• thermal emission of carriers

• expansion of  depletion zone

• change of capacitance

(b) high injection (n ≈ p)

(electrons and holes injected)

hole trap with cp >> cn

Change of capacitance: 

• trapped carriers change space charge (Neff)

• space charge determines depletion depth w

• depletion depth determines the capacitance

C(t=0) < CR : trapping of majority carriers

C(t=0) > CR  : trapping of minority carriers

sign of DC allows to differentiate

between electron and hole traps

𝐶 𝑤 = 𝜖0𝜖𝑆𝑖
𝐴

𝑤(𝑉)
= 𝐴

𝜖0𝜖𝑆𝑖𝑞0 𝑁𝑒𝑓𝑓

2(𝑉 + 𝑉𝑏𝑖)



DLTS (Deep Level Transient Spectroscopy): Spectrum

• DLTS spectrum is obtained from transients measured at different temperatures
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DLTS (Deep Level Transient Spectroscopy): Transient Analyses

• DLTS spectrum
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time

tW

temperature T

high T

low T

DC  =  C(t ) - C(t )1,2 1 2

t1 t2

Tmax

temperature T

high T

low T

𝜏𝑒 𝑇𝑚𝑎𝑥 =
𝑡2 − 𝑡1

𝑙𝑛
𝑡1
𝑡2

emission time constant 

at peak maximum temperature

can be extracted from time 

window parameters

perform several measurements

with different time windows to

gain a set of te(Ti), Ti pairs and

use them to construct an 

Arrhenius Plot



Transient Analyses: Defect parameters from Arrhenius Plot

Arrhenius Plot
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𝑒𝑛,𝑝 =
1

𝜏𝑒
= 𝜎𝑛,𝑝 ⋅ 𝑣𝑡ℎ,𝑛,𝑝⋅ 𝑁𝐶,𝑉 ⋅ 𝑒𝑥𝑝 −

𝐸𝑎
𝑘𝐵𝑇

𝑙𝑛 𝜏𝑒𝑣𝑡ℎ,𝑛,𝑝𝑁𝐶,𝑉 = −𝑙𝑛 𝜎𝑛,𝑝 +
𝐸𝑎
𝑘𝐵𝑇

en emission rate electrons

te emission time constant

cn capture coefficient electrons (cn = sn vth,n)

sn capture cross section for electrons

vth thermal velocity

NC density of states in conduction band

kB Boltzmann constant

Emission rate

Defect parameters extracted from Arrhenius plot

• slope:          activation energy Ea

• intercept:   capture cross section s



DLTS (Deep Level Transient Spectroscopy): Transient Analyses

• Various signal processing techniques

• Analog signal processing

• double boxcar integrator

• lock-in amplifier, analog correlator, ….

• Digital signal processing

• Fast-Fourier Transformation FFT

• Laplace Transformation

• Various correlator functions

• ..
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Example used at CERN: 

• Folding transient with 28 different correlator 

functions

• maxima analysis of a single DLTS scan (one 

time window) leads to 28 value pairs (te,T) 

which can be used for an Arrhenius plot 
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DLTS: Determination of Defect Concentration

• Band bending diagrams for deep acceptor:

[2] during filling pulse

[3] during transient phase 

• Transition region l:

• Defect concentration Nt

• Amplitude of the C-transient DC0 ~ Nt

• For l << WR simplifies to:
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TSC: Thermally Stimulated Current
• Measurement cycle

(1) Cooling

• under bias or without

(2) Filling (charge injection)

• Forward bias, zero bias, optical filling

(3) Current measurement

• Measure current while ramping up the 
temperature, discharging of traps results in 
current peaks

• Analyses

• Peak heights or integral over peak

•  Defect concentration

• Peak position gives indication for 
Ea and cross section s
• more precise: fit to spectrum and/or delayed heating 

measurement (see next slide)
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𝐼𝑇𝑆𝐶 𝑇 =

1

2
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TSC: Delayed heating method

• “Delayed heating” or “Thermal cleaning”

• Measuring the TSC peak several times with 
different delay times between the end of filling at 
T0 and the start of heating

• Increasing delay time: more charge carriers 
already emitted at T0 → TSC peak decreases

• Plot logarithm of the peak amplitude against 
delay time → slope: emission time constant τe(T0)

• Repeat the delay measurements at different T0

→ Arrhenius-plot to determine Ea and σ
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Photoluminescence (PL)  [1/2]

Excitation of the sample with light (‘photo’) and re-emission of part

of the absorbed energy as light (‘luminescence’)
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• Excitation is usually by a laser, for convenience of 

directed beam, with beam power of 100’s of mW.

• Green laser light is absorbed by the crystal, exciting 

an electron from the valence band to the conduction 

band, with a penetration depth of 1/e = 1 mm.

• Electron-hole pairs (excitons) are created with a 

lifetime of 10’s of ms in pure Si. 

• Excitons are captured by impurities, exiting the impurity.

Excited state

Ground state

Luminescence 

emitted



Photoluminescence (PL)  [2/2]
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• What is observed?

• Only (usually) neutral centres (not charged)

• Required concentrations for detection are over 1011 cm-3; best 1014 to 1016 cm-3

• Very sharp lines with typical energy resolution of 0.1 meV

• PL is not a quantitative method: PL not necessarily proportional to the concentration of defect

• Example:

• Standard FZ silicon (No O)

• Oxygenated FZ silicon (+O)

• irradiated with 23 GeV protons

• fluence 1016 cm-2

C-line: CiOi

G-line: CiCs

W-line: Sii related

Phosphorus

(before irradiation)



Infrared Spectroscopy (FTIR)  [1/3]

• Measurement of the light transmitted through a sample thickness d with 

polished parallel surfaces
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𝐼 = 𝐼0
1 − 𝑅 2exp(−𝛼𝑑)

1 − 𝑅2exp(−2𝛼𝑑)

I0 light intensity incident on the sample

d thickness of the sample

a frequency dependent absorption coefficient

R reflectivity

𝑅 ≈
𝑛 − 1

𝑛 + 1

2

≈ 0.3 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑑 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑

Michelson

Interferometer

Interferogram

ZPD



Infrared Spectroscopy (FTIR)  [2/3]

• FTIR – Fourier Transform Infrared Spectroscopy
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Infrared Spectroscopy (FTIR)  [3/3]

• Measurements at low temperature (20K)
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• Detection limits depend on

• measurement temperature (LT or RT)

• Sharpness of the lines

• Wavenumber position

• Detection limits normally in the range

• 5×1013 to 1015 cm-3



EPR:Electron Paramagnetic Resonance [1/3]

• EPR is the best experimental technique for determining the structure of irradiation induced 

paramagnetic point defects in semiconductors.  

• EPR spectroscopy deals with the interaction of the electron spins with external magnetic fields

• EPR = Zeeman spectroscopy: The effect of splitting a spectral line into several components in the presence of a static 

magnetic field (B ≠ 0) of defects with unpaired electron  states (S = 1/2, 1, …). 
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• The condition of resonance: h =  DE = gemBB0,  ge = 2.0023 for free electron

•   9.5 – 34 GHz, 95 GHz, …          

• Sensitivity: 2 x 1010 spins/Gauss (~ 1 ppb) 

ge electron’s g-factor
ge = 2.0023 (free electron)

mB Bohr magneton

1 Gauss = 10-4 Tesla

Δ𝐸 = 𝑔𝑒𝜇𝐵𝐵0 Δ𝐸 = ℎ𝜈

resonancesplitting of 

energy levels

𝜇𝐵 =
𝑒ℏ

2𝑚𝑐



EPR:Electron Paramagnetic Resonance [2/3]

• An unpaired electron can gain or lose angular momentum

• change the g-factor value through spin-orbit coupling

• information about the nature of the atomic/molecular orbital containing the 
unpaired electron - defect ‘s electronic structure

• The magnetic moment of a nucleus (I≠0) affects any unpaired electrons associated 
with that atom. 
• hyperfine splitting of the EPR resonance signal into doublets, triplets …..

• further surrounding nuclei lead to super hyperfine splitting

• Also the nuclear quadrupole moment impacts on the measured signal

• The g-factor and hyperfine coupling in an atom/ molecule may not 
be the same for all orientations of the unpaired electron in external 
magnetic field 
• spectra anisotropy depending on the electronic structure of the atom/molecule 

•  reflects the local structure
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EPR spectrum of CH3 radical



EPR:Electron Paramagnetic Resonance [3/3]

• Example: EPR results after irrad. with 3.5 MeV electrons,  =1017 cm-2
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Radiation Damage

Microscopic Defects

vs.

Macroscopic Device Properties
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Some selected examples with clear correlations between defects and device degradation:

• Leakage current after hadron irradiation (short term annealing)

• Space charge changes during reverse annealing (long term annealing)

• Oxygen enriched silicon: proton vs. neutron damage

• Acceptor removal effect in LGAD sensors



Radiation induced defects with 

impact on device performance
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RD50 map of most relevant defects for device performance near room temperature:

BiOi
(acceptor removal)

Phosphorus: shallow dopant
(positive charge)

BD: positive charge 
higher introduction after proton than after 

neutron irradiation, oxygen dependent

E30: positive charge

higher introduction after 

proton irradiation than after 

neutron irradiation

Leakage 

current: V3

Reverse 

annealing
(negative  charge)

Boron: shallow dopant
(negative  charge)

leakage current

& neg. charge
current after  g irrad,

V2O (?)

• Trapping: Indications that E205a and H152K are important (further work needed)

• Converging on consistent set of defects observed after p, p, n, g and e irradiation.

• Defect introduction rates are depending on particle type and energy, and some on material!



Example: Defects with impact on leakage current
• Macroscopic observation: Leakage current build-up following NIEL (for hadrons)

• Leakage current scaling (almost) with NIEL and independent of silicon material (not for gammas!)

• Leakage current is annealing in time and with temperature.

• Example: Annealing study on a FZ sample (6x1011 n/cm2)
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Leakage Current DLTS spectra

DLTS difference spectra 
(disappearing peaks)

[A.Junkes, PhD thesis 2011 & Vertex 2011 Proceedings]

DNt(E5)  vs. Da

Correlation found for
many materials after 
neutron irradiation

Decrease in defect concentration

• Microscopic observation:

• The defects E4/E5 (annealing at 60°C)

and E205a (annealing at 200°C) are contributing to

the leakage current with 60% and 30 % respectively.



Defects: Impact on Neff (reverse annealing)
• Macroscopic observation:

• Irradiated silicon sensor show “reverse annealing” 
(negative space charge increasing with time)

• Example: Neutron irradiated epitaxial silicon

• Identification of hole traps that grow with 
reverse annealing and are deep acceptors 
(labelled: H(116K),H(140K),H(152K))

• Absolute correlation of defect concentration
to increase of |Neff| (reverse annealing)
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2x1014 n/cm2, Epi-St 75mm

[A.Junkes PoS(Vertex 2011) 035; I.Pintilie, APL 92,024101 (2008); Junkes PhD thesis]



Defects: Impact on Neff (particle type)
• Macroscopic observation: Dependence on particle type (protons vs. neutrons)

• In several oxygen rich silicon materials neutron irradiation leads to build-up of net negative space charge
(“type inversion”) while charged hadron irradiation leads to build up of net positive space charge. 

• Note: Violation of NIEL (Non Ionizing Energy Loss) Hypothesis!

• Example: Epi silicon (EPI-DO, 72mm,170Wcm) irradiated with 23 GeV protons or reactor neutrons 
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• Microscopic observation

• The Donor E(30K) is introducing the additional positive space charge after proton irradiation

• Defects related to build-up of negative space charge not influenced (follow the NIEL scaling)

[I.Pintilie et al., NIMA 611 (2009)52-68]



• Acceptor removal coefficients obtained on a wide range of sensor types

• pin diodes (epi, FZ, MCZ, …), LGAD detectors, CMOS sensors

• after charged hadron irradiation (red) and neutron irradiation (black/blue)
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𝑁𝑒𝑓𝑓 Φ = NB0 exp −𝑐𝐴Φ + 𝑔 ⋅ Φ

• Parameterization of acceptor removal established within RD50

• covering the range [B]=1012 to 1018 cm-3 (10 kWcm to 5 mWcm) i.e. damage predictions can be done

Example: 23 GeV proton irradiated epi diodes
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• Acceptor removal: Radiation induced de-activation of acceptors (p-type doping, Boron) 

• Impact: 

• Macroscopic studies:

• Change of silicon conductivity; Change of sensor depletion voltage and/or active volume

• Loss of gain in LGAD sensors, sets radiation harness limits for timing detectors (ETL, HGTD)

RD50: Dedicated acceptor removal studies



BiOi

Defect studies: Acceptor Removal
• Microscopic origin:

• Formation of defects containing Boron that no longer acts as shallow dopant
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Bs

Radiation 

Damage

• Status

• Large amount of data (Wafers, Detectors, CMOS, LGAD)

• Acceptor removal is parametrized over 6 orders of magnitude in resistivity

• Damage predictions are possible 

• Defect engineering (with Carbon) works 

but microscopic understanding needs more work!

• Measured defect concentrations do not fully explain the macroscopic observations.
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Summary

M.Moll - Defect Characterization - 10 June 2021 - IP2I Lyon 34

Technique Based on Defect parameters Limitations

C-DLTS
Deep Level Transient Spectroscopy

Charge capture/emission

-Capacitance transients

Et, sn,p, Nt low density of bulk or interface defects (<Nd/3) 

Chemical nature (indirect)

TSC

Thermally Stimulated Current

Charge capture/emission

Current –free charged carriers

Et, sn,p, Nt high density of bulk defects (up to 1000 Nd) 

Chemical nature (indirect)

TDRC

Thermally Dielectric Relaxation Current

Charge capture/emission

Displacement Current

Et, sn,p, Nt high density of interface states

Chemical nature (indirect)

PL –Photoluminescence Photon Absorption followed by 

Photon Emission

PL bands; (Et, t) Only for radiative bulk recombination centers

Chemical nature (indirect)

FTIR - Infrared Spectroscopy Absorption of IR energy on 

molecules vibrational modes

Nt (acc. 20-30%), 

Defect structure

-Large density of defects 

(> 1015 cm-3) 

EPR Electron Paramagnetic Resonance Zeeman effect and Spins 

resonance

Chemical nature and vicinity

Nt

Large density of defects  (> 1016 cm-3) 

Only paramagnetic centers

High Resolution Transmission Electron 

Microscopy

Electron microscopy structure and chemical 

composition

Large density of defects - clusters

electron beam damage of the sample during the 

observations

…there are many more methods (see references).

• Most powerful is the combination of various methods in combination with annealing experiments and variation 

of materials (e.g. doping levels, impurities, isotope doping; exposure to gammas, electrons, protons, neutrons. 

• RD50 has successfully identified several radiation induced defects responsible for device degradation effects 

(e.g. leakage current and effective doping of silicon sensors, impact of oxygen).

• Hot topic today: Acceptor removal …. ongoing work



References and Acknowledgements

Material taken from:

• RD50 collaboration: http://www.cern.ch/rd50
• Anja Himmerlich, DLTS and TSC: A brief introduction, June 3-5 2020, CERN, RD50 Workshop

• Yana Gurimskaya,  I-DLTS – First experience and prospects: 17.05.2021, CERN, WP1.4. Meeting

• Michael Moll, PhD thesis, 1999 Hamburg University

• Gordon Davies, Photoluminescence, WODEAN workshop 2006

• Leonid Murin, FTIR, WODEAN workshop 2006

• Eckhart Fretwurst, DLTS, WODEAN workshop 2006

• Ioana Pintilie, VERTEX 2016, Experimental techniques for defect characterization of highly irradiated materials and structures

• Books
• Dieter K.Schroder, Semiconductor Material and Device Characterization

• Gareth R. Eaton, Sandra S. Eaton, David P. Barr, Ralph T. Weber, Quantitative EPR

• Peter Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon 

M.Moll - Defect Characterization - 10 June 2021 - IP2I Lyon 35

http://www.cern.ch/rd50

