Computer Programming
Good Practices
for physicists and PhD candidates

Vincent LAFAGE

11JCLab, Laboratoire de Physique des 2 Infinis Iréne Joliot-Curie
Université Paris-Saclay

[]
universite

PARIS-SACLAY

bora
de Physique
des2 infinis

Iréne Joliot-Curie

vendredi 7 mai 2021

1/41

mailto:vincent.lafage@in2p3.fr

®

B Preface

® best practices?
® better practices?
® good practices ?
looks very moral : a lot of principles indeed... and much casuistry as well.

We will take a more hygienic / prophylactic approach :

bugs are more like germs than demons!!
They grow in unclean programming environment.
= A living code needs regular cleaning.

This is NOT a talk about Software Quality
= No ISO formalism, no administration, no formal process

This is about Self-Defense !

More guidelines than hard rules...

We will also address ethical implications later.

2/41

¢ B Software engineering

a craft

® 1968 NATO Software Engineering Conferences
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
nato1968.PDF

® term probably coined by Margaret HAMILTON, lead Apollo flight
software designer

HIPPOCRATES

Vita brevis, ars longa, occasio praeceps, experimentum periculosum,
idicium difficile. !

PETER NORVIG Teach Yourself Programming in Ten Years
https://norvig.com/21-days.html

1. Lifeis short, and art long, opportunity fleeting, experimentations perilous, and judgment difficult.
3/41

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://norvig.com/21-days.html

Qb Prototype code

90 % of our code has not much life expectancy.
— it's of no consequence

+ it’s an excellent playground to train our practice

Train regularly on recoding small examples : programming kata

4/41

Know your tool

execute typical instruction

fetch from L1 cache memory
branch misprediction

fetch from L2 cache memory

Mutex lock/unlock

fetch from main memory

send 2K bytes over 1Gbps network
read IMB sequentially from memory
fetch from new disk location (seek)
read 1MB sequentially from disk
send packet US to Europe and back

1ns

0.5ns

5ns

7ns

25ns

100 ns
20000 ns
250000 ns
8000000 ns
20000000 ns
150000000 ns

5/41

@
LG

Separate data &
processing

Excel™ (any spreadsheet) is an excellent prototyping tool : all is included
(data, processing and display)
..but it is a bad industrial tool :

the implied code is hidden

there’s no check (no compiler)

easy to use without applying adequate scrutiny, oversight and
validation

Architect your code with a clear cut entrance and exit

Use standard file formats (.txt, .csv, .hdf5, .cdf, .fits, .root)

Use databases (PostgreSQL)

6/41

Code Comments

what is a good comment ?

Usefulness : is it a comment or a paraphrase?

non Duplicity : is it a comment or a paraphrase ?

Clarity : is the comment really clearer than the code?

Conciseness / Brevity

Objectivity

Insight : comment should explain/illustrate the Finality of the code
= Comment Only What the Code Cannot Say

Don't comment bad code — rewrite it.

A comment is of zero (or negative) value if it is wrong.

Comment never get checked by the compiler, nor by the human...

7/41

5
*

R OK K X R X X K X K X K X X K X K X K X K X X X X X X

Noisy Code

Copyright (c) 1995, 2008, Oracle and/or its affiliates. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met :

— Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

— Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

— Neither the name of Oracle or the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
1S" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

¥/

*k

*

The HelloWorldApp class implements an application that

8/41

(]
"
B Comments

A delicate matter, requiring taste and judgement. | tend to err on the
side of eliminating comments, for several reasons. First, if the code is
clear, and uses good type names and variable names, it should explain
itself. Second, comments aren’t checked by the compiler, so there is no
guarantee they're right, especially after the code is modified. A
misleading comment can be very confusing. Third, the issue of
typography : comments clutter code.

Rob PIKE, "Notes on Programming in C”
http://www.literateprogramming.com/pikestyle.pdf

A common fallacy is to assume authors of incomprehensible code
will somehow be able to express themselves lucidly and clearly in
comments., Kevlin HENNEY

9/41

http://www.literateprogramming.com/pikestyle.pdf

Comments

There is a famously bad comment style :
i=i+1; /* Add one to i */
and there are worse ways to do it :

/**********************************
*

*
* Add one to i &
* *

**********************************/

i=i+1;

Don’t laugh now, wait until you see it in real life.

10/ 41

q B Versioning
git 101

git Use cases for the newbie :

® Getting some code from colleagues, collaboration
® git clone URL
® Versioning your own code on your own machine
@ git init
@ type a first version of your text/source file
© git add filename
@ compile it, test it, check it, execute it.. until it passes
@ git commit -m''message''
@ improve your file
@ back to step 4
® Later, you'll share it on a central repository such as a gitlab instance

Commit often, commit early
Start using it for your logbook, your diary. Practice every day.

Later, when you feel at ease, use branches...

11/41

®

¢ ' Commit comments
Conventional Commits :

a lightweight convention on top of commit messages.

easy set of rules for creating an explicit commit history.

<type >[optional scope]: <description>
[optional body]

type :

feat : introduces a new feature to the codebase

fix : patches/squashes a bug in your codebase

perf: improves performance (less memory, less 10, more speed...)
refactor: rewrite/restructure your code, however does not change any
behaviour (nor performance)

tests : add missing tests or correcting existing tests

style : do not affect the meaning (white-space, formatting, missing
semi-colons, etc)

build : affect build components like build tool (Makefile), dependencies,
project version,

docs : affect documentation only

conf : affect configuration only

chore : miscellaneous (for instance, related to the versioning system)

ci : continuous integration

pack : packaging specification (such as rpm or deb specification files)

ops : affect operational components like infrastructure, deployment, backup, recovery, ...

edit : modify a feature
del : delete a feature

DRY : don’t mention the file(s), the date, the author(s)

12/41

Versioning comment
examples

feature : compute Archimedes's constant integrating disc area by
fix : simplify assignment

fix : adapt OpenMP directive to older compilers

fix : adapt assignment to more generic shell

build : deal with older ct+ compiler

fix : align type of loop index with type of bound

fix : align type of loop index with type of bound

style : clarify the meaning of printed report

fix : align type of litteral index with type of assignment variable
style : turn to standard C—style loop and align type of litteral wi
style : clarify the meaning of printed report

fix : align type of loop index, type of index bound and type of Iit

13/41

Versioning comment
examples

Commit message with no body
feat : allow provided config object to extend other configs

Commit message with scope
feat(lang) : add polish language

Commit message with ! to draw attention to breaking change
refactor!: drop support for Node 6

Commit message with both ! and BREAKING CHANGE footer
refactor!: drop support for Node 6

BREAKING CHANGE : refactor to use JavaScript features not available in

14 /41

Development space
degrees of freedom

Developmental

A

[
1) \\ J
§ ! /

Functional

-

Operational)

15 /41

Qb Know your tool

editor

Beyond the emacs vs. vi war
« Je suis de la religion de ma nourrice et de mon roi », DESCARTES

® atom
® vscode
® eclipse
® sublime (hassleware)
® Code: :Blocks IDE
LA
avoid
® notepad
® nedit
® gedit

16/41

“

Know your tool
editor

Beyond cut&paste and search

auto indent

colorized syntax for your language(s)
rectangular cut&paste

regular expression

delete trailing whitespace

untabify (turn tabs to spaces)
refactoring menu :

® rename identifier in the full code

17 /41

Lines

size matters

66 characters for Jurassic Fortran was certainly not enough
but it is the typical size of a newspaper column,
for a good reason : our average brain buffer size / eye coordination capability

= support your brain!

132 is way too much :
modern screens can take it (even more for your extra-wide screen)

can your team video projector take it ?

80 character is a nice constraint

18/41

” Indent complexity

Use it as a visual design ; illustrate the structure : supports your brain !

19/41

Qb Spacing

One whitespace is usually enough between two keywords or identifiers
One blank line is enough to separate parts of code

= no more than one blank line

20/41

N Typography

We usually read a long time before we code
= we take a lot of typographic standard for granted

® space after comma, not before

® space after closing parenthesis, not before

® space before opening parenthesis, not after

® no space before double punctuation, one after (English typography)

= support your brain !

21/41

Qb Casing

Roman empire had only upper case : they have fallen twice!
| wouldn’t jump to conclusion..
We usually read much more lower case than upper case

= support your brain !

22/41

Style

To be, or not to be, that is the question :
Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,
Or to take Arms against a Sea of troubles,

And by opposing end them ? William Shakespeare
Hamlet

Continuing existence or cessation of
existence : those are the scenarios. Is it
more empowering mentally to work towards
an accomodation of the downsizings and
negative outcomes of adversarial
circumstance, or would it be a greater
enhancement of the bottom line to move
forwards to a challenge to our current
difficulties, and, by making a commitment

to opposition, to effect their demise ? Torin B

Long Words Bother Me

23/41

Qb Naming Identifiers

Avoid Lego naming

Put/stuff more meaning in the name so as to render comment useless
Take care : Clearer, not longer

don’t get your code in turkish/japanese/german : agglutinative language

24 /41

‘b Object Oriented naming
pltfalls Avoid Lego naming

THE WORLD SEEN BY AN "OBTECT-ORENTED ' PROGRAMMER.

1%

(€ derberhnmed ProwdeVioiCorbeoler] |

25 /41

¢ & Underabstraction
What is the code about ?

min v alue

Branch A
CoreE
_shellhlt nax

memset
aData |

removing comments
ignoring language keywords

as well as std functions and g
types 'lzgr Or CO e

use wordcloud generator lename zIm number
= does not reveal much intent...

3139 for loops (1415 distincts, 620 duplicates)

“There are only two hard things in Computer Science : cache invalidation and naming things.”
— Phil Karlton

26 /41

Qb Cyclomatic complexity

Nb functions
8

= « A measure of the decision
complexity of the functions » . - I I I "_ _
= « number of possible paths s gy

in a function flow »

= each if, for, while or
switch increases cyclomatic
number.

Complexity

22 122 122 122 1220

27 /41

B Essence of OOP

The Law of Demeter (LoD) or principle of least knowledge is a design
guideline for developing software, particularly object-oriented programs.
In its general form, the LoD is a specific case of loose coupling.

® Each unit should have only limited knowledge about other units :
only units "closely” related to the current unit.

® Each unit should only talk to its friends; don't talk to strangers.

® Only talk to your immediate friends.

= limit long range coupling

28 /41

B Build

a recipe to cook your executable

write the recipe : the Makefile; a part of the documentation

® First, most coder get their first Makefile from colleagues

® Then, don't stop, improve your Makefile
— use standard names for Makefile variables : cc, CPP, CXX, FC, CFLAGS,..
— use standard metasyntactic variables for Makefile

— expand the targets : get your Makefile to produce your doc with
Doxygen, your changelog with git and semantic versionning

29 /41

'b Know your tool

Compiler’s Options

g++ —std=c++11
—Ofast —march=native —mtune=native
—g3
—Wall —Wextra —pedantic
—Wformat=2 —Wwrite—strings —Wunreachable—code
—Wshadow —Wstack—protector
—0 montecarlo++ montecarlo. cxx

30/41

"

.. and

The compiler is your
friend listen to warnings!

asks the compiler for advice

—Wall —Wextra —pedantic
—Wformat=2 —Wwrite—strings —Wunreachable—code
—Wshadow —Wstack—protector

31/41

Software Architecture

a craft & an art

You spend time in your software : what kind of place is it to live in?
® a dormitory ?
® a parking lot ?
® an attic?
® a workshop?
® a storage room?
® 3 patio?

Would you invite people to share this place ? How do you feel (re)entering it ?
Marcus VITRUVIUS Pollio, De architectura :
all buildings should have three attributes : firmitas, utilitas, venustas?

2. stability, utility, beauty
32/41

‘b Unit Testing

Write the properties your function is supposed to
Code these assertions

then program the function
Build a set of test cases

33/41

Floating (point) world

Revisiting “What Every Computer Scientist Should Know About Floating-point Arithmetic”

® Numbers : real, decimal, binary, floating point...

® When computations don’t turn out as expected...(why, how)

¢ global errors
® local errors
® composing errors

® Heuristics for accuracy :
how a rough estimate can save epsilons

® How to reconcile adimensionalisation and performance
® How to reconcile abstraction and accuracy : functions of a complex variable

® Why are geometrical computations so hard

® The hidden side of functional programming : towards total functions

34/41

D={18,n €Z,peN}=2[1/10] (decimal)
B={%,n cZ,pecN}=2[1/2] (binary)

BCD mais D¢B:LeD, £ ¢B=0.1+02+0.3 (}=0.0011005..) = not good for financial
computations...

® closure :
Y(z,y) €B2, =+ye€B,
V(z,y)€B2, zxyecB
® commutativity :
Y(z,y)€B2, zty=y+zx,
V(z,y)€B2, xzxy=yxx
associativity :
V(z,y,2)€BS, z+(y+2)=(z+y)+2
V(w,y,z)E[B3, zXx(yxz)=(xxy)xz
® distributivity :
V(z,y,2)€B3, zx(y+z)=zxyt+zxz
® total order :
V(z,y,z)eB3, z<yandy<z=az<z (transitivity) ;
V(z,y)eB?, z<yandy<z=xz=y (antisymmetry) ;
VeeB, z<=z (reflexivity) ;
V(z,y)eB2, z<yory<wz (totality).
® topology :
B C D C Q are dense in R = arbitrarily close approximations to the real numbers

35/41

Decimal vs. binary ...ond
binary vs. floating

closure :

Iz, y) €F2, z+y¢F,

H(I,y)E[F2, XYy gEF

= rounding and extension F = F U {+Inf} U {NaN} U{O_} overflow, underflow, inexact
commutativity :

V(z,y)€F?, z+y=y+ax,

V(z,y)€F?, zxy=yxz

associativity :

H(m,y,z)E[F:}, T+ (y+2)#(x+y)+z,

H(ar,y,z)e[F‘s, X (yxz)#(xxy)xz

distributivity :

H(I,y,z)€F3, zX(y+z)Fxxy+xxz

total order :

V(z,y, z) € [F3, z<yandy<z=ax<z (transitivity) ;
V(z,y)eF?, z<yandy<z=>axz=y (antisymmetry) ;
VeelF, z<x (reflexivity) ;

V(z,y)eF?2, z<yory<uz (totality).

Jx,y)€F, z<yandy<z (NaN).

topology :

B C D C Q are dense in R = arbitrarily close approximations to the real numbers
but

[: floating point numbers, finite parts of B (or D) are dense nowhere

36/41

Formats

y « computing is about representation »
entific notation :
significand x base significand € Z, exponent € 7
Standard form : mantissa, alias normalized significand
mantissa x base®P°nent mantissa € [1; base[, exponent € Z
Trick, for base 2 : the most significant digit is always 1...

exponent

sign? exposant (8 buls) mantisse (23 bits)
IIIIIHI\IIII\IIIIIIIIIIIIII|IIII
3130 2322 (bit index)
exposant mantisse
signe (11 bits) (52 bits)

exposant mantisse
s\qneils bits) (1 bit) (63 bits)

In the registers, we widen mantissa with three bits :
® guard bit
® round bit
® sticky bit
Problems
® apparent : rounding = catastrophic cancelation
® apparent : conversion. Goes unnoticed or perceived as minor.
® apparent : overflow. Apparent, but not treated.
® less apparent : underflow, gradual underflow : denormal numbers

37/41

Rounding

Vo € R, I(x_, x;) € F? |x_ < 2 < x, (closest representable neighbours)

= correct rounding requires at least 2 extra bits beyond target accuracy
or even more (table maker’s dilemma)
correct rounding, faithful rounding, happy-go-lucky rounding

rounding is non-linear but completely deterministic !

38/41

@
¢ B Conversion

® D ¢ B: every decimal is not a binary

= conversion to binary relies on rounding
£+ =0.219=0.0011005© 13421773 x 2726 =0.2+ 2,98 x 107°

4 byte float 25.4E0 =25.399999619 -

8 byte double 25.4D0 = 25.39999999999999858 -+

10 byte long-double 25.4T0 = 25.399999999999999999653 -

16 byte quadruple 25.4Q0 =25.3999999999999999999999999999999877 ---

B C D : every binary is a decimal

However, converting a binary, usually from a computation, usually for display or storage, is not toward the
exactly corresponding decimal : it would require too many meaningless decimal digits.
$=0.0015=0.125;360.11¢

= conversion to decimal also relies on rounding

Can division by a constant be replaced by multiplication by this constant reciprocal ?

This replacement can induce an extra uncertainty.

Counter-example : dividing by 2 (has an exact representation) induces no uncertainty, and the reciprocal of 2
having an exact representation, multiplying by % induces no uncertainty either.

Example : dividing by 5 or by 10, or even by 3 : one uncertainty coming from division operation, two uncertainties
coming from multiplication operation and misrepresentation of operand

Counter-example : dividing by 7t : the inexact representation of 7r induces one uncertainty, the inexact
representation of its reciprocal also induces one uncertainty (almost the same relative uncertainty : 0, 37 ulp and
0, 43 ulp respectively)

39/41

S Catastrophic Cancellation ?

By way of exception in base 10 (not in binary) ! mantissa : 3 decimal digits
For a =3.34 and b= 3.33

® a6b=0.01 = cancellation (relative precision loss)
but a benign one (the floating point result is exact : a ©b=a — b)

. {a2 — b2 = 0.0667 = 6.67 x 1072
a®a©b®b =0.1=1.00x 1071
50% of relative error on the result, or 333 ulp, no digit is even correct :
catastrophic cancellation
® When does this occur?
® How many digits are lost ?

Plus, there is an overflow risk
= Let’s factorize this!

(a®b)®(a©b)=6.67®0.01 =6.67 x 1072 exact

= The Right Way™

40/41

Area of triangle

HERON OF ALEXANDRIA, area S as a function of lengths a, b and c of edges

S=Vplp—a)p—b)(p—c)
p= %”*C half-perimeter
Symmetric, but numericaly unstable, for needle-like triangles (when large and small
values meet in the same formula)
KAHAN Re-labelling : @ > b > ¢

*\/[a +@+o)llc—(a=b)][c+(a—b)][a+t (b—0)]

Apparent Symmetry is lost, but the formula is way more robust
Originating from a determinantal expression

41/41

