

Nuclear and astrophysical aspects of the r-process nucleosynthesis

S. Goriely (IAA-ULB)

The r-process nucleosynthesis

Part I:

The rapid neutron-capture process

- r-process in SNII, NSM, Collapsars
- Nuclear physics aspects

Slow neutron-capture process: $\tau_{\beta} << \tau_{n}$

 τ_n = lifetime against neutron capture τ_β = lifetime against β⁻ decay

Rapid neutron-capture process: $\tau_{\beta} >> \tau_n$

Slow neutron-capture process: $\tau_{\beta} << \tau_n$ $N_n \sim 10^7 - 10^{11}$ cm⁻³ $T \sim 1 - 3 \times 10^8$ K $t_{irr} \sim 10 - 10^4$ yr

 $τ_n$ = lifetime against neutron capture $τ_β$ = lifetime against β- decay

Slow neutron-capture process: $\tau_{\beta} << \tau_n$ $N_n \sim 10^7 - 10^{11} \text{ cm}^{-3}$ $T \sim 1 - 3 \cdot 10^8 \text{K}$ $t_{irr} \sim 10 - 10^4 \text{yr}$ Rapid neutron-capture process: $\tau_{\beta} >> \tau_n$ $N_n >> 10^{20} \text{ cm}^{-3}$ $T \sim 1 - 2 \cdot 10^9 \text{K}$ $t_{irr} \sim 1 \text{s}$

 $τ_n$ = lifetime against neutron capture $τ_β$ = lifetime against β- decay

Closed shells at magic numbers N=50, 82, 126 --> slow n-capture

The signature of nuclear properties in the double-peak pattern of the solar abundance distribution

The s-process nucleosynthesis

The *r*-process nucleosynthesis

The *r*-process nucleosynthesis responsible for half the elements heavier than iron in the Universe

one of the still unsolved puzzles in nuclear astrophysics

Nucleosynthesis in the ν -driven wind

Decompression of hot material

n,p at
$$T_9 \approx 10^{\circ} \rho \sim 10^{6} \text{g/cm}^3$$

NSE

He recombination

 $\alpha \alpha n^{-9} \text{Be}(\alpha, n)$
 $\alpha \alpha n^{-9} \text{Be}(\alpha, n)$

the r-process yields highly sensitive to

Typical conditions in the v-driven wind

- the entropy $S \propto T^3 / \rho$
- the electron fraction $Y_e = Y_p / (Y_p + Y_n)$
- the expansion timescales τ_{dyn}

$$S \propto \frac{T^3}{\rho} \le 100$$

$$Y_e = \frac{Y_p}{Y_p + Y_n} \approx 0.47$$

$$\tau_{dyn} = 100 \text{ms}$$

No r-process in realistic hydrodynamical simulations:

conditions for a successful r-process (high N_n/N_{seed})

• High entropy wind (hight-
$$T$$
, low- ρ) \rightarrow Increase S

• Low-
$$Y_e$$
 wind (n-rich matter) \rightarrow Lower Y_e

• Fast expanding wind
$$\rightarrow$$
 Lower τ_{dyn}

$$Y_e \sim 0.3$$

 $\tau_{dyn} \sim 10 \mathrm{ms}$

 $S \sim 500$

Self-consistent 2D hydrodynamical (successful) explosions

(Wanajo, Müller, Janka, Heger, 2018)

Electron-Capture Supernova $(M_i \sim 8.8 M_o) \rightarrow$ production of n-rich up to ~Zr

• Core-Collapse Supernovae $(M_i = 11-15-27M_0) \rightarrow$ production of p-rich up to ~Mo

2D/3D MHD jet-like explosion of magnetically driven core-collapse supernovae

(Winteler et al. 2012; Mösta et al. 2014; Nishimura et al. 2015)

Pre-collapse core with **strong** initial magnetic fields and rapid rotation \rightarrow highly magnetized NS with $B \sim 10^{15} \text{G}$ Rare events $P \sim 0.01 - 0.1\%$ of all SNe

> $B_0=10^{11} \,\mathrm{G} \rightarrow \mathrm{Synthesis} \,\mathrm{up} \,\mathrm{to} \,A{\sim}130$ $B_0=10^{12} \,\mathrm{G} \rightarrow \mathrm{Synthesis} \,\mathrm{up} \,\mathrm{to} \,\mathrm{Th/U}$

The *r*-process nucleosynthesis responsible for half the elements heavier than iron in the Universe

one of the still unsolved puzzles in nuclear astrophysics

New observational insight thanks to the observation of GW170817 binary NS merger and its optical counterpart AT2017gfo

On August 17, 2017

First detection of binary NS merger

11h after

OPTICAL

The analysis of the GW170817 light curve

- The kilonova light curve is compatible with an ejecta mass $(M_{\rm ej} \approx 0.03 0.06 M_{\odot})$
 - "Blue" A < 140 component with $M_{\rm ej} \approx 0.01 0.02 M_{\odot}$ and $v_{\rm ej} \approx 0.26c$
 - "Red" A>140 component with $M_{\rm ej}\approx 0.02\text{-}0.05~M_{\odot}$ and $v_{\rm ej}\approx 0.15c$

• The ejected mass and new merger rate inferred from GW170817 imply that NS mergers are a dominant source of *r*-process production in the Universe.

Dynamical ejecta: very much dependent on the impact of neutrinos

Disk ejecta of the BH-Torus system

Composition of matter ejected during neutron star merger

Ejected masses: $M_{\rm disk} \gtrsim M_{\rm dyn}$

Total radioactive heating rate of the resulting Kilonova at late times

$$Q_{\text{tot}} = Q_{\beta} + Q_{\text{fis}} + Q_{\alpha}$$

Composition of matter ejected during neutron star merger

Dynamical + BH-Torus system

Robust production of all $A \ge 90$ r-nuclei with a rather solar distribution

Composition of the matter ejected from a HMNS

((Perego et al. 2014; Martin et al. 2015, Wu et al. 2016, Lippuner et al. 2017; Just et al. 2022)

Contribution from both dynamical and HMNS $1.35 - 1.35 M_{\odot}$

Significant production of A~90 nuclei including Sr

Final abundance distributions from Binary Neutron Star Mergers

Robust production of all $A \ge 90$ r-nuclei with a rather solar distribution

What about other astrophysical sites for the *r*-process ??

Collapsar = Collapse of rapidly rotating massive stars $(M>20M_{\rm o})$

- Failed explosion with direct collapse to a BH
- Weak explosion with the proto-NS collapsing due to fallback material

Rapid rotation of the infalling material leading to the formation of a massive accretion disk around the BH

Generation of long GRB & SN Ic

Long γ -ray bursts

Siegel et al. (2019)

Contribution of collapsars vs NSM to the Galactic enrichment

Total ejected mass: $\sim 1M_{\odot} \sim 10-30 \text{ x NSM}$

Frequency of events: ~ NSM / 10

- \rightarrow Could produce the Galactic *r*-content
- → No time delay as in binary systems

Many still open questions on the r-process remain ...

- Dominant site(s) of the r-process: NSM ? MR-SNe ? Collapsars ? Others ?
- Frequency and properties of different sites (in particular, mass and velocity of the ejecta, coalescence time for binary systems)?
- Impact of neutrino interactions during NSM and collapsar ejection?
- Angular and velocity distribution of the ejecta?
- Comparison with spectroscopic observations, in particular with *r*-enrichment in old low-Z stars (not as universal as often claimed), ultra-faint dwarf galaxies, ...?
- Chemical evolution of the Galaxy?
- NUCLEAR PHYSICS ?

The r-process nucleosynthesis

Part II:

The rapid neutron-capture process

- r-process in SNII, NSM, Collapsars
- Nuclear physics aspects

Another uncertainty: nuclear physics input

 $(n,\gamma) - (\gamma,n) - \beta$ competition & Fission

- β-decay rates
- (n,γ) and (γ,n) rates
- Fission (nif, sf, βdf) rates
- Fission Fragments Distributions

Still many open questions

some 5000 nuclei with $Z \le 110$ involved on the n-rich side

Another uncertainty: nuclear physics input

 $(n,\gamma) - (\gamma,n) - \beta$ competition & Fission

- β-decay rates
- (n,γ) and (γ,n) rates
- Fission (nif, sf, β df) rates
- Fission Fragments Distributions

Still many open questions

some 5000 nuclei with $Z \le 110$ involved – essentially no exp. data

Another uncertainty: nuclear physics input

 $(n,\gamma) - (\gamma,n) - \beta$ competition & Fission

- β-decay rates
- (n,γ) and (γ,n) rates
- Fission (nif, sf, β df) rates
- Fission Fragments Distributions

Still many open questions

some 5000 nuclei with $Z \le 110$ involved – essentially no exp. data

Nuclear inputs to nuclear reaction & decay calculations

The macroscopic liquid-drop description of the nucleus

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \Delta(Z, N)$$

Phenomenological description at the level of integrated properties (Volume, Surface, ...) with quantum "microscopic" corrections added in a way or another (shell effects, pairing, etc...)

Nuclear inputs to nuclear reaction & decay calculations

A more « microscopic » description of the nucleus

e.g. Mean-Field

Strong nuclear force

Electrostatic repulsion

$$E_{MF} = \int \mathcal{E}_{nuc}(\mathbf{r}) d^3 \mathbf{r} + \int \mathcal{E}_{coul}(\mathbf{r}) d^3 \mathbf{r}$$

obtained on the basis of an Energy Density Functional generated by an effective n-n interaction!

Self-consistent mean-field theory

A more « microscopic » description of the nucleus

e.g. Mean-Field

Strong nuclear force

Electrostatic repulsion

$$E_{MF} = \int \mathcal{E}_{nuc}(\mathbf{r}) d^3 \mathbf{r} + \int \mathcal{E}_{coul}(\mathbf{r}) d^3 \mathbf{r}$$

obtained on the basis of an Energy Density Functional generated by an effective n-n interaction!

$$\begin{split} \mathcal{E}_{\text{Sky}} &= \sum_{q=n,p} \frac{\hbar^2}{2M_q} \tau_q + \frac{1}{2} t_0 \Bigg[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(\frac{1}{2} + x_0 \right) \sum_{q=n,p} \rho_q^2 \Bigg] + \frac{1}{4} t_1 \Bigg\{ \left(1 + \frac{1}{2} x_1 \right) \Bigg[\rho \tau + \frac{3}{4} (\nabla \rho)^2 \Bigg] \\ &- \left(\frac{1}{2} + x_1 \right) \sum_{q=n,p} \Bigg[\rho_q \tau_q + \frac{3}{4} (\nabla \rho_q)^2 \Bigg] \Bigg\} + \frac{1}{4} t_2 \Bigg\{ \left(1 + \frac{1}{2} x_2 \right) \Bigg[\rho \tau - \frac{1}{4} (\nabla \rho)^2 \Bigg] + \left(\frac{1}{2} + x_2 \right) \Bigg] \\ &\times \sum_{q=n,p} \Bigg[\rho_q \tau_q - \frac{1}{4} (\nabla \rho_q)^2 \Bigg] \Bigg\} + \frac{1}{12} t_3 \rho^\alpha \Bigg[\left(1 + \frac{1}{2} x_3 \right) \rho^2 - \left(\frac{1}{2} + x_3 \right) \sum_{q=n,p} \rho_q^2 \Bigg] \\ &+ \frac{1}{4} t_4 \Bigg\{ \left(1 + \frac{1}{2} x_4 \right) \Bigg[\rho \tau + \frac{3}{4} (\nabla \rho)^2 \Bigg] - \left(\frac{1}{2} + x_4 \right) \sum_{q=n,p} \Bigg[\rho_q \tau_q + \frac{3}{4} (\nabla \rho_q)^2 \Bigg] \Bigg\} \rho^\beta \\ &+ \frac{\beta}{8} t_4 \Bigg[\left(1 + \frac{1}{2} x_4 \right) \rho (\nabla \rho)^2 - \left(\frac{1}{2} + x_4 \right) \nabla \rho \cdot \sum_{q=n,p} \rho_q \nabla \rho_q \Bigg] \rho^{\beta-1} + \frac{1}{4} t_5 \Bigg\{ \left(1 + \frac{1}{2} x_5 \right) \Bigg[\rho \tau - \frac{1}{4} (\nabla \rho)^2 \Bigg] \\ &+ \left(\frac{1}{2} + x_5 \right) \sum_{q=n,p} \Bigg[\rho_q \tau_q - \frac{1}{4} (\nabla \rho_q)^2 \Bigg] \Bigg\} \rho^\gamma - \frac{1}{16} (t_1 x_1 + t_2 x_2) J^2 + \frac{1}{16} (t_1 - t_2) \sum_{q=n,p} J_q^2 \\ &- \frac{1}{16} (t_4 x_4 \rho^\beta + t_5 x_5 \rho^\gamma) J^2 + \frac{1}{16} (t_4 \rho^\beta - t_5 \rho^\gamma) \sum_{q=n,p} J_q^2 + \frac{1}{2} W_0 \left(J \cdot \nabla \rho + \sum_{q=n,p} J_q \cdot \nabla \rho_q \right). \end{split}$$

Still *phenomenological*, but at the level of the effective *n-n* interaction Obviously more complex, but models have now reached stability and **accuracy**!

Nuclear inputs to nuclear reaction & decay calculations

"Microscopic" approach is a necessary but not a sufficient condition!
"(Semi-)Microscopic" models must be competitive in reproducing exp. data!

Nuclear inputs to nuclear reaction & decay calculations

"Microscopic" approach is a necessary but not a sufficient condition!
"(Semi-)Microscopic" models must be competitive in reproducing exp. data!

Nuclear mass models

Nuclear mass models provide all basic nuclear ingredients:

Mass excess (Q-values), deformation, GS spin and parity, radius, ...

but also the major nuclear structure properties

single-particle levels, pairing strength, density distributions, ... in the GS as well as non-equilibrium (e.g fission path) configurations

Building blocks for the prediction of ingredients of relevance in the determination of nuclear reaction cross sections and β -decay rates, such as

- nuclear level densities
- γ-ray strengths
- optical potentials
- fission probabilities
- etc ...

The criteria to qualify a mass model should NOT be restricted to the rms deviation wrt to experimental masses (often now reduced by ML techniques), but also include

- the quality of the underlying physics (sound, coherent, "microscopic", ...)
- all the observables of relevance in the specific applications of interest (e.g astro)

Recent Mic-Mac mass models

$$E = E_{LD} + E_{micro}$$

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \Delta(Z, N)$$

- FRDM'12: update from FRDM'95 (Möller 2012)
 - $\sigma_{rms} = 0.60 \text{ MeV} (2408 \text{ nuclei in AME'16})$
- WS mass formula (Ning Wang et al. 2011 including RBF corr.)
 - WS3: $\sigma_{rms} = 0.34 \text{ MeV}$ (2408 nuclei in AME'16)
 - WS4: $\sigma_{rms} = 0.30 \text{ MeV}$ (2408 nuclei in AME'16)

Mean Field mass models

$$E = E_{MF} - E_{coll} - E_{W}$$

 E_{MF} : HFB or HF-BCS (or HB) main Mean-Field contribution

 E_{coll} : Quadrupole Correlation corrections to restore broken symmetries and include configuration mixing

 E_W : Wigner correction contributes significantly only for nuclei along the $Z \sim N$ line (and in some cases for light nuclei)

Skyrme-HFB

Gogny-HFB

Relativistic MF

 $rms \sim 0.5-0.8 MeV$

 $rms \sim 0.8 MeV$

rms > 1.1 MeV

Relative agreement/disagreement between mass models

Major differences

- stiffness of the mass parabola
- around magic numbers $N\sim126$ and $N\sim184$
- heavy and super-heavy nuclei
- odd-even pairing effects

Impact of masses on the r-process nucleosynthesis in NS mergers

- β -decay rates calculated consistently with estimated Q_{β}
- n-capture rates calculated consistently with estimated S_n , β_2

Attention: do not judge the quality of a mass model (or any nuclear input) from a comparison between r-process calculations and solar abundances!!

Impact of "relevant" mass models on the r-process in NS mergers

A

Nuclear fission

Three fission modes play an important role during the r-process nucleosynthesis:

- spontaneous fission: strongly depends on the fission barrier height
- neutron-induced fission: strongly depends on S_n – B_f (for E_n ~keV~kT)
- β -delayed fission, *i.e.* fission following a β -decay: strongly depends on Q_{β} B_f

Fission and the production of actinides

Fission processes (spontaneous, β -delayed, neutron-induced) and fission fragment distribution of relevance for estimating the

- termination point of the r-process (recycling, heating, prod of SH)
- production of Pb-peak elements
- production of radiocosmochronometers (U, Th)
- production of light species ($A \sim 110 160$) by fission recycling

Detailed calculation of fission probabilities (sf, nif, βdf) for about 2000 nuclei

Fission properties and the r-process in NSM

Calculation of the fission path and barriers

Calculation of the fission path and barriers

Fission properties mainly depend on the primary fission barriers

Fission barriers calculated for all nuclei with $90 \le Z \le 120$

Fission properties and the r-process

Special emphasis on the Fission Fragment Distribution for the $A\sim278$ isobars

Sensitivity of dynamical composition to the fission fragment distribution

along the A=278 isobar (from the N=184 closed shell)

The fundamental role of β -decay rates

(including $\beta dn \& \beta df$)

Experimental β⁻ half-lives available for some 1213 nuclei

→ some ~4000 missing

Description of the β -strength function in a statistical manner

• QRPA approach (Skyrme, Gogny, RMF)
Description of the β-strength function through an effective n-n interaction

Limited number of available large-scale calculations

Comparison for all the 950 nuclei with $Z \ge 10 - \sigma_{\rm rms}$ on 312 $T_{1/2} \le 1$ s

Dynamical ejecta

Large impact of the β -decay rates – set the synthesis timescales

→ Need *deformed* "microscopic" calculation (MF+QRPA) including GT+FF transitions, odd nuclei, PC,

Large impact of the β -decay rates – set the synthesis timescales

→ Need *deformed* "microscopic" calculation (MF+QRPA) including GT+FF transitions, odd nuclei, PC,

Large impact of the β -decay rates – set the synthesis timescales

→ Need *deformed* "microscopic" calculation (MF+QRPA) including GT+FF transitions, odd nuclei, PC,

Conclusions

The astrophysical site for the r-process remains puzzling!

Compact Object Mergers (NS-NS;NS-BH):

- Analysis of GW170817 compatible with *r*-process
- Robust hydrodynamical simulations
 Successful solar-like r-process for A ≥ 90 nuclei from
 Dynamical and Disk ejecta

But still some major open questions, in particular

- Neutrino effects in relativistic models
- Chemical evolution of the Galaxy
- Nuclear physics associated

and Supernovae/Collapsars have not said their last words

Conclusions: still many open Nuclear Physics questions

- Fundamental role of experiments (masses, β -decays, cross sections, nuclear ingredients, ...) though *mainly to adjust/guide models*
- Nuclear inputs to the reaction model (almost no exp. data !)
 - GS properties: masses (correlations GCM, odd-nuclei)
 - Fission: fission paths, NLD at the saddle points, FFD
 - E1/M1-strength function: GDR tail, PR, ε_{γ} =0 limit, T-dep, PC
 - Nuclear level Densities: pairing, shell and collective effects
 - Optical potential: the low-E isovector imaginary component

• The reaction model

- CN vs Direct capture for low- S_n nuclei

• The β-decay rates

- Forbidden transitions, deformation effects, odd-nuclei, PC

We are still far from being capable of estimating *reliably* the neutron capture and β -decay of exotic n-rich nuclei