Breaking of mirror symmetries 2p Clusters in the Ikeda conjecture and Possible astrophysical implications

SOME MISSIONS ARE NOT A CHOICE

TOM CRUISE MISSION:IMPOSSIBLE FALLOUT DE OLIVEIRA

Nucleons in a Mean Field

Spin-orbit + Coulomb

$$V_{so} = V_0 \times r_0^2(l.s) \frac{1}{r} \frac{d}{dr} V_{WS}(r)$$

Shell Model

Discrete states

Mirror symmetry

Mirror symmetry

nn=pp

Charge symmetry

np =nn=pp

Charge independence

5820

0

 ${}^{17}_{9}{
m F_8}$

Generalized to A=17 **Isobaric Analogues States**

Astrophysical applications

Mass from

outbursts

Spectroscopic factors should be equal $F + p|^{19}Ne^* > = \langle ^{18}F + n|^{19}F^* \rangle$

From Utku et al. PRC 1998

Asymmetry: Energies

(One can expect al least the same difference with the predictions of the classical shell model)

Asymmetry: Energies

Not far from proton emission threshold!!

Asymmetry: Spectroscopic factors

 $^{19}\mathrm{Ne}^*$ ${}^{19}F^{*}$

Spectroscopic factors

^aAssuming $\Gamma_{\gamma}(^{19}\text{Ne}) = \Gamma_{\gamma}(^{19}\text{F}) = \Gamma(^{19}\text{F})$ because $\Gamma_{\gamma}/\Gamma(^{19}\text{F}) \approx 1$ (Ref. [9]).

 $\theta^2 \approx \bar{\theta}^2 * (0.1 - 10)$

(one can expect al least the same difference with the predictions of the shell model)

Asymmetry: Spectroscopic factors

 $^{19}\mathrm{Ne}^*$ $| {}^{19}F^*$

Spectroscopic factors

$^{15}N(\alpha, \gamma)$	E II. Proper ¹⁹ F and ¹⁵ O(rties of s $(\alpha, \gamma)^{19}$ Ne.	ome mirror	levels in ¹⁵ F and	d ¹⁷ Ne corre	spon ig to	resona es ir
$E_x(^{19}\text{F})$ (MeV)	<i>E_x</i> (¹⁹ Ne) (MeV)	J^{π}	$\frac{\Gamma_{\gamma}^{a}}{(meV)}$	$B_{\alpha}(^{19}\text{Ne})^{b}$	$\Gamma_{\alpha}(^{19}\text{Ne})$ (meV)	$\theta_{\alpha}^{2}(^{19}\text{Ne})^{c}$ (×10 ⁻²)	$\theta_{\alpha}^{2}({}^{19}\mathrm{F})^{\mathrm{d}}$ (×10 ⁻²)
4.378	4.379	(7/2)+	> 60	0.044 ± 0.032	> 2.8	> 7.8	0.56
4.550	4.600	$(5/2)^+$	101 ± 55	0.25 ± 0.04	33 ± 18	3.2	4-8
4.556	4.549	$(3/2)^{-}$	38^{+23}_{-19}	0.07 ± 0.03	$2.9^{+1.7}_{-1.4}$	0.06	0.84
4.083	4/12	(5/2)-	43 ± 8	0.82 ± 0.15	195 ± 36	0.67	1.5 - 2.4
5.:07	5 092	(5/2)+	> 22	0.90 ± 0.09	> 200	> 0.19	0.033-0.33

^aA suming $\Gamma_{\gamma}({}^{19}\text{Re}) = \Gamma_{\gamma}({}^{19}\text{F}) = \Gamma({}^{19}\text{F})$ because $\Gamma_{\gamma}/\Gamma({}^{19}\text{F}) \approx 1$ (Ref. [9]).

 $S_{\alpha}(^{19}\mathrm{F}) = 4.013\mathrm{MeV}$ Not far from alpha emission threshold!! $S_{\alpha}(^{19}\mathrm{Ne}) = 3.528\mathrm{MeV}$

But the world is also a continuum

Discrete states Continuum i.e. ${}^{15}F^* \rightarrow {}^{14}O + p$

Effects of the continuum coupling: Broadening of the states

Quantum Mechanics exercise

Resonant Elastic Scattering 3/2* ¹⁵N(p,p)¹⁵N ¹⁴N(p,p)¹⁴N 30 2 dσ_{cm}/dΩ (mb/sr) 00 02 05 01 02 05 /dΩ (mb/sr) dσ_{Cm}/ 50 0.8 0.9 E_{Lab}(MeV) 0.5 0.6 0.85 0.9 .65 0.7 0.75 E_{Lab}(MeV) 0.8 0.71.1 0. p **Radioactive Beam** Si ~ 5 MeV/n detector The Inverse Kinematics Thick Target scattering method $\sigma_{CM} = 3 \text{ keV}$ Resolution:

Coupling with continuum

Single-particle wave functions with the same quantum numbers (2s1/2)

Inside nucleus

Scattered wave

We should use the time-dependent Schrödinger equation

Effects of the continuum coupling: Thomas Ehrmann shift

Effects of the continuum coupling: Thomas Ehrmann shift

1) Adjust a Woods-Saxon well to fit the binding energy Suppose: ${}^{17}O = {}^{16}O + 1 n(2s1/2)$

2) Use the same potential for the mirror nucleus ${}^{17}F$ Suppose: ${}^{17}O = {}^{16}O + 1 p(2s1/2)$

$$\delta \mathbf{E}^{theo} = 386 \text{ keV}$$

$$\delta \mathbf{E}^{exp} = 395 \text{ keV}$$
 Only 9 keV difference!

Thomas Ehrmann shift is a function of the structure of the state

Suppose: 170 = 160 + 1 n(1d5/2)
$$\delta E^{theo} = 70 \, \mathrm{keV}$$

"A core + two nucleons"

Both case well described as Core + n + p

Ex: ${}^{16}F = {}^{14}O + n + p$

Effective *n-p force*

State (J)	¹⁶ N	¹⁶ F		
0-	-1.151	-0.775		
1-	-0.874	-0.577		
2-	-2.011	-1.829		
3-	-1.713	-1.523		
	(MeV)			

Up to 40% difference Seems weaker in ¹⁶F

> Is it possible to understand this difference?

$$E_c(J) = \frac{Z_{\text{core}}}{4\pi\epsilon_0} \int_0^\infty \frac{\rho(r)u_p(r,J)^2}{r} dr.$$

It reduce the difference in *n-p* force from

40 % to 20 %

But, still a breaking of the nuclear force symmetry?

Predicting Effective *n-p* interaction

a spreading of the wave functions that is fully responsible of the observed difference energies between ¹⁶N and ¹⁶F.

Effects of the continuum coupling: Clustering and correlations

Confirmed by Gamow Shell Model Structure of the 1/2- state is mainly ¹³N+2p with 7% ²He(0+) $<\Psi|0p_{1/2}[1]s_{1/2}[2]>^2=0.97$ De Grancey, F., Mercenne, A., et al. PLB, 758, 26-31. 654 366 ⁸Be + α

+ 4439

0

Cousin of the « Hoyle » state in ¹⁵F?

Effects of the continuum coupling: Clustering and correlations

Ikeda conjecture = The cluster structures appears at each decay threshold

K. Ikeda et al., Prog. Theor. Phys. Suppl., Extra Number, 464(1968).

Generalized : "The clustering is a generic near-threshold phenomenon in open quantum system"

Increase of correlation Change spectroscopic factor J. Okolowicz , M. Ploszajczak and W. Nazarewicz Prog. Theor. Phys. Supplement 196 (2012) 230. J.-P. Ebran, E. Khan, T. Niksic & D. Vretenar, Nature 487, 341, (2012) M. Freer, Nature 487, 309 (2012)

See:

Jose Pablo LINARES FERNANDEZ - Continuum coupling correction in Gamow Shell Model

Jean-Paul Ebran - Nuclear energy density functionals

Breaking of mirror symmetries 2p Clusters in the Ikeda conjecture and Possible astrophysical implications

The end

Thank you