Universality in many-body systems

Lorenzo Contessi CNRS/IN2P3, IJCLab, 91405 Orsay, France

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM Cea

On the point

What are we talking about:

- + <u>Structure</u> of "many"-particle non relativistic systems (e.g., nucleons).
- + Build a interaction that describe such systems.
- + Make ab inito calculations (numerical problem)

The goals

- + Understanding of the **mechanisms** of nuclear proprieties;
- + Support to **experiments**;
- + **Precision description** of nuclear observables;

What is universality? – unitarity (2-body only)

Size of the two-body* system

range of the interaction and particle size.

>>

*nonrelativistic & quantum

Ideally: $a_0 \rightarrow \infty$ (Scattering length) $r_0 \rightarrow 0$ (Effective range)

What is universality? – unitarity (2-body only)

Size of the two-body* system

>>

range of the interaction and **particle size**.

*nonrelativistic & quantum

Ideally: $a_0 \rightarrow \infty$ (Scattering length) $r_0 \rightarrow 0$ (Effective range)

Nuclei (theory):

Systems close to the **Unitary limit** can be found in

- **Atomic physics** (Feshbach resonances, ${}^{6}\text{Li} {}^{6}\text{Li}$, ${}^{40}\text{K} {}^{40}\text{K}$ atoms)
- **Nuclear physics** (n p interaction)
- **Lattice nuclei** (Unphysically large m_{π}) ٠
- **Hypernuclei** $(\Lambda n \text{ interaction})$ ٠
- **Hadronic physics** (X(3872) Particles) ٠
- **Cold Atom Physics** (Unitary two-specie fermions) ٠

Atoms (experiments):	Nuclei (theory):	Hypernuclei (theory):	Hadrons (theory):	Lattice Nuclei (theory
C.A. Regal (2003)	U. van Kolck (1999)	HW. Hammer (2001)	E. Braaten et al (2003)	N. Barnea et al (2015)
M.W. Zwierlein (2003)	S. König (2017)	L.C. (2018)		L.C. et al (2017)
M. E. Gehm (2003)				
J. T. Stewart (2007)		PhyNuBe 06/12/20	J21	

Universality

We observe very different systems to have **similar fewbody** proprieties

2B scattering parameters; Few-body states;

We can use a similar theory

Universality

Same microscopic symmetries; Separation of scales

We observe very different systems to have **similar fewbody** proprieties

Same **many-body** phenomena

The Idea

If you know that **two systems** with the same fundamental symmetries or the same few-body proprieties, you can design a **common theory**.

2B scattering parameters; Few-body states;

We can use a similar theory

Simple and intuitive: Contact theory

- Treat particles as degrees of freedom (elementary particles)
- They can interact only **short-range**

(Short range structure is irrelevant: no quark structure) (Long range interactions are negligible: no pion exchange)

• Works for a limited set of energies

- Easy to understand
- Clear limitations
- Expandible
- Minimal inputs required
- Universally transposable

Simple and intuitive: Contact theory

- Treat particles as degrees of freedom (elementary particles)
- They can interact only short-range

(Short range structure is irrelevant: no quark structure) (Long range interactions are negligible: no pion exchange)

- Works for a limited set of energies
- Tricky to be properly implemented
- Clear limitations only in the known cases
- Not trivial to be practically expanded beyond 1st order
- Minimal inputs required at the first orders

- Easy to understand
- Clear limitations
- Expandible
- Minimal inputs required
- Universally transposable

A complete theory

 $r_{ij} = r_i - r_j$ $V(r_{ij}) = \delta(r_{ij})$

Contact theory formally:

$$L = N^{\dagger} \left(i \partial_0 + \frac{\hbar^2}{2m} \nabla^2 \right) N - C_0 N^{\dagger} N^{\dagger} N N$$

A complete theory

 $r_{ij} = r_i - r_j$ $V(r_{ij}) = \delta(r_{ij})$

Contact theory formally:

$$L = N^{\dagger} \left(i\partial_0 + \frac{\hbar^2}{2m} \nabla^2 \right) N - C_0 N^{\dagger} N^{\dagger} N N$$

$$L^{N^{>0}LO} = C_2 \left(N^{\dagger} \nabla^2 N N^{\dagger} N + h.c. \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_4 \left(N^{\dagger} \nabla^4 N N^{\dagger} N + h.c. \right) + ... + D_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + E_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + ...$$

A complete theory

 $r_{ij} = r_i - r_j$ $V(r_{ij}) = \delta(r_{ij})$

Contact theory formally:

$$L = N^{\dagger} \left(i\partial_0 + \frac{\hbar^2}{2m} \nabla^2 \right) N - C_0 N^{\dagger} N^{\dagger} N N$$

$$L^{N^{>0}LO} = C_2 \left(N^{\dagger} \nabla^2 N N^{\dagger} N + h.c. \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_4 \left(N^{\dagger} \nabla^4 N N^{\dagger} N + h.c. \right) + ... + D_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + E_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + ...$$

Including all the derivative/many-body operators one can **express any interaction**

PhyNuBe 06/12/2021

$r_{ii} = r_i - r_i$ A complete theory $V(r_{ii}) = \delta(r_{ii})$ **Contact theory formally:** $L = N^{\dagger} \left(i\partial_0 + \frac{\hbar^2}{2m} \nabla^2 \right) N - C_0 N^{\dagger} N^{\dagger} N N$ $L^{N^{>0}LO} = C_2 \left(N^{\dagger} \nabla^2 N N^{\dagger} N + h.c. \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N N^{\dagger} \vec{\nabla} N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N N \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N \right) + C_{1$ $C_{4}(N^{\dagger}\nabla^{4}N N^{\dagger}N + h.c.) + ...$ $D_{0}(N^{\dagger}N^{\dagger}N^{\dagger}NNN) + E_{0}(N^{\dagger}N^{\dagger}N^{\dagger}NNNN) + ...$ Including all the derivative/many-body operators one can express any interaction PhvNuBe 06/12/2023

Pionless EFT powercounting

Pionless EFT powercounting

Pionless EFT powercounting 1^{MO}

In the nuclear case: $\Gamma_{\rm NN} = \frac{\rm Q}{\rm m_{\pi}} = 0.5 \sim 0.8$

Momentumless 2-3 body

Momentum dependent / 4-body

 $O(\Gamma)$

 $O(\Gamma^2)$

G.P. Lepage, How to renormalize the Schrödinger equation (1997)
U. van Kolck, Nucl.Phys. A645 273-302 (1999)
J.-W. Chen, et al. Nucl.Phys. A653 (1999)
S. König, H. W. Grießhammer, H. W. Hammer, and U. van Kolck, J. Phys. G43, 055106 (2016)
B. Bazak, PRL 122.143001 (2019)

+

+

NLO

N²LO

 $O(\Gamma^{\geq 3})$

Duality universality (contact) EFT (nonrelativistic) LO $\mathcal{L} = N^{\dagger} \left(\partial_0 + \frac{\nabla^2}{2m} \right) N +$ Unitary limit: $a_0 = \infty$ $r_0 = 0$ Finite three-body scale: $0 > E_3 > -\infty$ $+ C_0 N^{\dagger} N^{\dagger} N N + D_0 N^{\dagger} N^{\dagger} N^{\dagger} N N N$

Duality universality (contact) EFT (nonrelativistic) $\mathcal{L} = N^{\dagger} \left(\partial_0 + \frac{\nabla^2}{2m} \right) N +$ **Unitary limit**: $a_0 = \infty$ $r_0 = 0$ Finite three-body scale: $0 > E_3 > -\infty$ $+ C_0 N^{\dagger} N^{\dagger} N N + D_0 N^{\dagger} N^{\dagger} N^{\dagger} N N N$ However, no physical system is perfectly in the unitary limit S. König (2016) Physical systems can be close to the limit: e.g. $|a_{n-n}| = (|-23.| \text{ fm}) \gg (r_0 \sim 2.7 \text{ fm})$ Effective field theory **powercounting**

Deviation from the universal limit are needed to predict physical phenomena. **i.e. subleading perturbative corrections** define the specific physical system.

Interested in any of these systems?

Come for a chat!

Other examples are: + Alpha clusters + Condensed matter + Neutron dorps & neutron matter

Hadrons

With a simple theory and only knowing That $\mathcal{D} - \overline{\mathcal{D}}$ interaction is **unitary** The **range** of such interaction

A LO theory can be fitted

Predict bound 3*X*, 4*X* (qualitative prediction)

2*X* is uncertain (bound only for certain cut-offs)

Minimal input parameters + underlying symmetries

Allow to predict effects unknown experimentally!

PhyNuBe 06/12/2021

Hyperons (Λ – Hypernuclei)

 $\Lambda - N$ interaction is short range $\Lambda - \#_{\#}$ is a shallowly bound system

Perfect example of interaction close to unitary limit

LO EFT has few input : can be fitted from existing experiments; Theoretical errors are relatively small;

The powercounting guides in the choice of the relevant operators:

solves the overbending problem;

 $B_{\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) = 1.14(1)^{+(44)}_{-(26)}$

Nuclei

Nuclear physics is "almost" at the unitary limit $a_{np} \sim 5.5 \text{ fm}$ $r_{np} \sim 1.5 \text{ fm}$ $a_{nn} \sim 20 \text{ fm}$ $r_{nn} \sim 2.5 \text{ fm}$

Deviations may play an important role!

 $E^{LO}(^{4}He) = 29.2\pm0.5 \text{ MeV}$ Is **close** to the experimental data $E^{Exp}(^{4}He)$ 28.3 MeV.

But larger nuclei (systems with mixed symmetry) Appear to be **never stable in the universal regime**!

What kind of **deviations** should we include to stabilize them?

M. Schäfer, L.C., J. Kirscher, J. Mareš Phys.Lett.B 816 (2021) 136194 PhyNuBe 06/12/2021

 $(\Lambda \rightarrow \infty \text{ is the universal limity})$

Lattice nuclei

L. C., A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck Phys. Lett. B **772**, 839-848 (2017)

PhyNuBe 06/12/2021

Atoms (Bosons)

The square system **behave differently** compared with the other systems composed by two-atom species.

Can this be seen in experiments?

The \square system energy depends from the \triangle but the \triangle is formed by different kind of particles

Numerics

Fit the theory:

Predictions:

two-body bound state and scattering methods (Numerov, finite difference methods)

Few-body ab-initio methods (e.g. stochastic variational method)

Many-body ab-initio methods (e.g. quantum Monte Carlo method)

SVM:

Variational diagonalization method based on random gaussian basis expansion

Monte Carlo:

Quantum Monte Carlo is a class of ab initio, numerical, stochastic many-body methods able to solve the Schrödinger equation with improvable uncertainties.

Pros:

- + Up to ~ 80 fermions with auxiliary field technique
- + Improvable accuracy
- + Easily parallelizable

Cons:

- Limited to groundstates
- Generally expansive
- Sign problem makes things hard

Leading order theory:

2-body + 3-body fitted to reproduce (n-n) scattering, deuterium, and triton binding energy

No coulomb, no tensor force, no spin orbit at LO

A practical example: few nucleons

¹⁶0 - Monte Carlo calculation

Phys.Lett.B 772 (2017) 839-848

S-wave system		P-wave system		
Λ [fm ⁻¹]	⁴ He Energy [MeV]	Λ [fm ⁻¹]	¹⁶ 0 Energy [MeV]	4α treshold [MeV]
2	-23.17(2)			
4	-23.63(3)	2	-97.19(6)	-92.68(8)
6	-24.06(2)	4	-92.23(14)	-94.52(9)
8	-26.04(5)	6	-97.51(14)	-100.24(8)
∞	$-30^{0.3(sys)}_{2.0(stat)}$	8	-100.97(20)	-104.2(2)
Ехр	-28.296	∞	$-115^{1(sys)}_{8(stat)}$	$-120^{1(sys)}_{8(stat)}$

- All the errors shown are statistical errors from Monte Carlo method.

PhyNuBe 06/12/2021

Oxygen density ($m_{\pi} = 140 \text{ MeV}$)

5He 6He

J. Kirscher, H. W. Grießhammer, D. Shukla, H. M. Hofmann: arXiv:0909.5606

Breaks in $\alpha + n$ and $\alpha + n + n$

40Ca QMC calculation suggests the breaking in: Breaks in $\alpha + \alpha + \alpha + ...$

Multi-fermion systems with contact theories, PLB 816 (2021)

Will they ever bind?

One little step further is necessary:

If a resonance is close to the **threshold**, it might be possible to move it with a **subleading correction** (there is no proof this is possible, nor proof this is not possible) Known **three-fermion** case: No physical resonance is found.

No scale invariance breaking, Three-body force might change picture.

4H resonance: the minimal nuclear system with an Efimovian component

Contact EFT: a sub-threshold resonance is present

Contact theory

- \rightarrow everything fine in **S-wave**
- → no P-wave boundstates

A resonance is found in ${}^{4}H \rightarrow many-body P-shell poles can be created (not in the correct physical position)$

Can the resonant pole be moved to the bounded region with a **perturbative** NLO insertion? Preliminary calculation showed that either P^2 or $P \cdot P'$ can do the job.

What can be learned

About universality:

- + Many systems show a **universal behaviour**.
- + LO of EFT takes care of universality;
 Sub-leading orders account for deviations.
- + Similar systems share **common EFT** description and you can transfer the knowledge to **unknown physics**.
- Hany other universality classes are out-there.
 What are? Where to find them? Can they be useful?

The guarding "Chatula" Sept 2017 Jerusalem

A weird concept: scale invariance (this is quite theoretical)

Define the **typical momentum** you are interested (probe momentum)

Two-body system is **infinitely large** with respect to this probe

The range of the interaction is **infinitesimal**

No scale in the system: everything should be 0 or ∞ [no measure units]

Problem:

In real physics the three body energy is not ${\bf 0}$ nor ∞ ... Moreover, if you make the calculation in universality

 $E_3 \to -\infty$

Discrete scale invariance: 3+ body

Unitary system with 3 particles in S-wave show:

Thomas Collapse / Efimov Effect

In the **unitary limit** a system of **3 bosons/distinguishable particles collapses** $Unitarity \implies E_3 \rightarrow -\infty$

A repulsion is needed to stabilize the system to a finite energy E_3 . E_3 breaks the scale invariance of the system!

Conditions to (Efimov) unitarity

Range of the interaction Size of the two body system Size of the three body system

$$(r_0 \to 0)$$
$$(a_0 \to \infty)$$
$$(R_3 < \infty)$$

L. H. Thomas (1935) G. Skorniakov and K. Ter-Martirosian (1957)

