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GMR has historically been studied within EDF theory

Ab-initio unicum: QRPA for spherical systems

● Quasiparticle Random Phase Approximation (QRPA)

● Very scarce attempts in Generator Coordinate Method (GCM)

Present goal: first systematic study of GMR in ab-initio

● PGCM (Projected GCM)

● QFAM (QRPA implementation)

[Garg, Colò, 2018]

[Brink, Weiguny, 1968]

[Papakonstantinou et al., 2007]
…

[Roth et al., 2021]



PGCM vs QRPA

7

Schrödinger equation



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistance

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistance

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistance

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistance

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistance

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

First ab-initio realization very recently developed

Handle anharmonicities and shape coexistance

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

1) PGCM (M. Frosini, CEA Saclay) 

2) QFAM (Y. Beaujeault-Taudière, CEA DAM)



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR
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Select on few collective coordinates 

Symmetries are restored
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Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

1) PGCM (M. Frosini, CEA Saclay) 

2) QFAM (Y. Beaujeault-Taudière, CEA DAM)

General implementation, can access

1. Doubly-closed-shell nuclei

2. Singly-open-shell nuclei

3. Doubly-open-shell nuclei



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

JM=00



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

[Bohigas et al., 1979]



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

[Bohigas et al., 1979]



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

Ground state only [Bohigas et al., 1979]



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

Ground state only

Complexity is shifted to the operator structure

[Bohigas et al., 1979]



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

Ground state only

Complexity is shifted to the operator structure

Encode the main physical features of the strength

[Bohigas et al., 1979]



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

Ground state only

Complexity is shifted to the operator structure

Encode the main physical features of the strength

First comparison ever of the two approaches !

Derived and implemented in an ab-initio PGCM code

[Bohigas et al., 1979]



Moments and Strength 

8

● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

Ground state only

Complexity is shifted to the operator structure

Encode the main physical features of the strength

First comparison ever of the two approaches !

Derived and implemented in an ab-initio PGCM code

[Bohigas et al., 1979]

Not discussed in the present talk
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Common features
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PGCM and QFAM have consistent numerical settings

● One-body spherical harmonic oscillator basis

○ emax = 10

○ ħ⍵ = 20 MeV

● Chiral two-plus-three-nucleon in-medium interaction

○ T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-
plus three-nucleon interactions for accurate nuclear structure studies", Phys. 
Lett. B, 808, 2020

○ M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, 
“In-medium k-body reduction of n-body operators”, The European Physical 
Journal A, 57(4), 2021

● Only monopole strength is addressed

● PGCM: GMR with quadrupole coupling ( r2 + β2  collective coordinates )
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Difficulty Deformation

Total Energy Surface EHFB(β2,r) Monopole Strength

● Single prolate minimum

● Little effect of static quadrupole deformation

● Weak coupling with quadrupolar vibrations

● Good QFAM/PGCM agreement 
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Deformation effects in 28Si 

14

Difficulty Deformation

Shape coexistence ? (1)

Total Energy Surface EHFB(β2,r) Monopole Strength

● Two wells clearly separated, oblate dominant

● Qualitatively similar results QFAM/PGCM

● No shape mixing

● Two-peak GMR on the prolate shape isomer ?

(1)  [Jenkins et al., 2012]



Comparison to experiment 

iThemba, Bahini 2021 RCNP, Kawabata 2013TAMU, Youngblood 2007

2009

15

1. PGCM superior to QRPA, i.e. coupling to quadrupole deformation/fluctuations captured 

2. Experimental data in doubly open-shell nuclei very useful and promising 

3. Data are not unambiguous, i.e. better data would be beneficial 
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And more if you have suggestions !
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