

Bogoliubov Coupled Cluster theory for open-shell nuclei

Pepijn DEMOL

Supervisors: Thomas DUGUET

Riccardo RAABE

Co-supervisor: Alexander TICHAI

PhyNuBE school

08/12/2021

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Huge diversity of nuclear phenomena

The atomic nucleus is a strongly correlated self-bound many-body quantum system and therefore intrinsically complex

Ground-state properties:

Mass, binding energy, shape, moments, ...

Nuclear reaction:

Fusion, knockout, transfer, ...

Radioactive decay:

 α , $\beta^{+/-}$, p, fission, ...

Exotic structures:

Halo, clusters, ...

Spectroscopy:

rotational & vibrational bands Single-particle dominated excitations

Huge diversity of nuclear phenomena

Many Models

- Examples
 - Liquid drop model
 - Rotational & vibrational models
 - Shell model
 - Nilsson model
 - ...
- Short comings
 - Not straightforwardly improvable
 - No clear path to connect them

Effective Theories

- Resolves these short comings
 - Systematically improvable
 - Connections (reduction) possible

Effective field theory

Emergence of phenomena from effective description More elementary description, reductionism

----- QCD
Chiral effective field theory (χ-EFT)

Effective field theory (EFT)

protons & neutrons as d.o.f.

- 1) Identifying appropriate degrees of freedom (d.o.f.)
- 2) ALL interactions complying with symmetries of underlying theory
- 3) Ordered in expansion governing hierarchy (power counting)
- 4) Fix low energy constants (LEC) from data (or underlying theory)

Effective field theory

Emergence of phenomena from effective description More elementary description, reductionism

Chiral effective field theory (χ -EFT) protons & neutrons as d.o.f.

"Ab initio" approach:
Application of χ-EFT to describe the nucleus

"Ab initio" approach to nuclear structure

Assumptions

- Structure-less protons and neutrons as d.o.f.
 - All nucleons active (no inert core)
- Only elementary interactions between them
 - Sound connection to QCD
 - All possible interactions allowed by symmetry
 - Up to A-body forces (in principle)

Ab initio ("from scratch") scheme = solve A-body Schrödinger equation (S.E.)

$$\hat{H}|\Psi_n^A\rangle = E_n^A|\Psi_n^A\rangle$$

Department of Physics and Astronomy

Institute for Nuclear and Radiation Physics

② Solving the Schrödinger equation

② Solving the Schrödinger equation

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Open-shell systems

Symmetry conserving:

$$[\hat{H}_0, \hat{A}] = 0$$
$$[\hat{H}_1, \hat{A}] = 0$$

closed shell

non-degenerate good starting point

open shell

degenerate IR divergence

Bogoliubov transformation

Solved IR divergence

Symmetry breaking:

$$[\hat{H}_0, \hat{A}] \neq 0$$
$$[\hat{H}_1, \hat{A}] \neq 0$$

 $open \rightarrow closed \ shell$

non-degenerate good starting point pairing incorporated

② Solving the Schrödinger equation

[4] V. Somà, T. Duguet, C. Barbieri, Phys. Rev. C 84 064317 (2011)

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Bogoliubov Coupled Cluster

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Scalability

m-scheme BCC

- Direct implementation of the BCC equations
- x not scalable to large model spaces

Computational wall: ≈ 200Gb of RAM

Model space size required for high-precision calculations

number of major shells in HO basis

Scalability

m-scheme BCC

- Direct implementation of the BCC equations
- x not scalable to large model spaces

Angular momentum coupling (AMC)

J-scheme BCC

- Exploit shared rotational symmetry of \hat{H} and computational basis
- Spherical BCC equations much more involved
- Assisted with automated AMC tools [5]
- ✓ Resolves scalability problem
- Benchmarked w.r.t. m-scheme code (small model spaces)

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Results

- m-scheme BCCSD
- Ground-state ²²O
- 5 major shells in computational basis

m-scheme BCCSD ²²O

Initial results

X Iterative process diverges

Enforce convergence with mixing techniques

Simple mixing

- ✓ Resolves divergence
- ✓ In agreement with results in Signorracci et al. [3]
- × Convergence is very slow

Convergence acceleration method

Direct Inversion of the Iterative Subspace (DIIS)

- ✓ Much faster convergence
- × Average particle number has shifted

particle number adjustment proposed in [3]

Iterative reference state adjustment (IRSA)

- ✓ BCC solution correct particle number on average
- ✗ Suitable reference state does not always exist
- **X** Computationally very intensive

Novel particle number adjustment

Internal particle number adjustment (IPNA)

- ✓ particle number constrained in each BCC iteration
- ✓ BCC converges even faster
- ✓ Cluster amplitudes are reduced

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Outlook

Collaborators

T. Duguet R. Raabe

R. Roth

A. Tichai

T. Duguet

J.-P. Ebran

A. Porro

A. Roux

A. Scalesi

V. Somà

G. Hagen

