NECTAR project

Response of solar cells to heavy ions at energies close to 10 AMeV at GANIL

M. Sguazzin¹, J.C. Thomas², J. Pibernat¹, B. Jurado¹, J. Michaud¹, J. Swartz¹, B. Jacquot², J. Giovinazzo¹, B. Thomas¹, P. Alfaurt¹, T. Chiron¹

1 Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), CNRS/IN2P3, Gradignan, France 2 Grand Accélérateur National d'Ions Lourds (GANIL), Caen, France

SOLAR CELL

Silicon - Solar Cells (Earth Solar

Michele Sguazzin

Germanium - Solar Cells

PhyNuBES Pace Application 8,2021

1979 Siegert ———> First heavy ions detection at energies about 1 AMeV

CHARGE COLLECTION PROCESS IN SOLAR CELLS IS VERY DIFFERENT

Field-funneling effect

- C. Hsieh, et al., Electron Device Lett. IEEE 2 (1981) 103-105
- F.B. McLean, et al., IEEE Trans. Nucl. Sci. 29 (1982) 2017–2023
- G.C. Messenger, et al., IEEE Trans. Nucl. Sci. 29 (6) (1982) 2024– 2031

Main Advantages:

1) Energy (1-2%) and time (few ns) resolution

Main Advantages:

1) Energy (1-2%) and time (few ns) resolution

2) Better radiation resistance

Main Advantages:

1) Energy (1-2%) and time (few ns) resolution

2) Better radiation resistance

3) Flexible geometry, very robust

4) Extremely cost-efficient (5 €)

Solar Cells appear a very interesting alternative to Silicons detector for Heavy ions at energies between 1 and 10 AMeV.

But...

high capacitance ($40\frac{nF}{cm^2}$, 1000 times larger than Si detector), increasing with Solar Cells surface

NECTAR Project:

Solar Cells as heavy ions detectors at energies E > 1 AMeV in UHV!

NO TEST HAS EVER BEEN PERFORMED!!

Michele Sguazzin PhyNuBE December 8, 2021

GANIL exploratory test experiments

2018

First irradiation experiment with Heavy ions above 1

AMeV!

CIME cyclotron was used to accelerate beams of:

- ⁸⁴Kr at 7, 10 AMeV
- ¹²⁹Xe at 10,13 AMeV

First results:

- 1. Best performance: company Solar Made, $10x10 \text{ mm}^2$, $\sigma(E)$ E=1.5% (RMS) and 3.6 ns (FWHM).
- 2. Stable behavior during irradiation with 100 to few 10³ pps for a minute.

A. Henriques et al., Nucl. Instrum. Methods A 969 (2020) 163941.

GANIL exploratory test experiments

2018

First irradiation experiment with Heavy ions above 1

AMeV!

CIME cyclotron was used to accelerate beams of:

- ⁸⁴Kr at 7, 10 AMeV
- ¹²⁹Xe at 10,13 AMeV

First results:

- 1. Best performance: company Solar Made, $10x10 \text{ mm}^2$, $\sigma(E) = 1.5\%$ (RMS) and 3.6 ns (FWHM).
- 2. Stable behavior during irradiation with 100 to few 10³ pps for a minute.

A. Henriques et al., Nucl. Instrum. Methods A 969 (2020) 163941.

New irradiation experiment at GANIL: March 2021

CIME cyclotron was used to accelerate beams of:

• ^{84}Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

• 84Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

 ^{84}Kr at 5, 10, 15 AMeV

CIME cyclotron was used to accelerate beams of:

• 84Kr at 5, 10, 15 AMeV

Charge-state selection using Dipole D11!

A Z	Q1	Rate
		(pps)
84Kr	36	1.37e+07
84Kr	35	1.12e+08
84Kr	34	5.11e+08
84Kr	33	1.31e+09
84Kr	32	1.89e+09
84Kr	31	1.52e+09
84Kr	30	6.87e+08
84Kr	29	1.74e+08
84Kr	28	2.47e+07
84Kr	27	1.97e+06
84Kr	26	8.77e+04
84Kr	25	2.19e+03
84Kr	24	3.07e+01
84Kr	23	2.41e-01
84Kr	22	1.06e-03
84Kr	21	2.62e-06
		/

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

Charge-state selection using Dipole D11!

CIME cyclotron was used to accelerate beams of:

⁸⁴Kr at 5, 10, 15 AMeV

MAIN IMPROVEMENTS

- Better intensity control
- Better alignment with respect to the incoming beam

1. Energy ($\sigma(E)/E$) and Time (FWHM) resolution

- Si 10x10 mm²
- Si 10x10 mm²
- Si 10x10 mm²
- Ge 20x20 mm²
- Si Detector

Energy ($\sigma(E)/E$) and Time (FWHM) resolution

 ^{84}Kr beam

● 84 Kr beam

Si - 10x10 mm²

Si - 10x10 mm²

Ge - 20x20 mm²

Si Detector

Michele Sguazzin

PhyNuBE

1. Energy ($\sigma(E)/E$) and Time (FWHM) resolution

⁸⁴*Kr* beam

Michele Sguazzin

PhyNuBE

1. Energy ($\sigma(E)/E$) and Time (FWHM) resolution

 ^{84}Kr beam

for **NECTAR** project

(large detection

arrays)!

Michele Sguazzin PhyNuBE

2. Characterization of solar cells linearity

Michele Sguazzin

PhyNuBE

2. Characterization of solar cells linearity

Michele Sguazzin

PhyNuBE

PRELIMINARY RESULTS

3. Simulation

1

- 1) 84-Kr 5 AMeV
- 2) 84-Kr 10
- **AMeV**
- 3) 84-Kr 15
- **AMeV**

ATLAS Silvaco code

CHARGE COLLECTION PROCESS IN SOLAR CELLS

PRELIMINARY RESULTS

- 3. Simulation
- 1) 84-Kr 5 AMeV
- 2) 84-Kr 10
- **AMeV**
- 3) 84-Kr 15
- **AMeV**

ATLAS Silvaco code

CHARGE COLLECTION PROCESS IN SOLAR CELLS

84-Kr 5 AMeV

POTENTIAL DISTORTION

PRELIMINARY RESULTS

- 3. Simulation
- 1) 84-Kr 5 AMeV 2) 84-Kr 10
- **AMeV**
- 3) 84-Kr 15
- **AMeV**

ATLAS Silvaco code

CHARGE COLLECTION PROCESS IN SOLAR CELLS

84-Kr 5 AMeV

POTENTIAL DISTORTION

PRELIMINARY RESULTS

1) 84-Kr 5 AMeV
2) 84-Kr 10
AMeV
3) 84-Kr 15
AMeV

ATLAS Silvaco code

CHARGE COLLECTION PROCESS IN SOLAR CELLS

SIMULATION OF CHARGE COLLECTION

PRELIMINARY RESULTS

- 3. Simulation-
- 1) 84-Kr 5 AMeV
- 2) 84-Kr 10
- **AMeV**
- 3) 84-Kr 15

SOLAR CELE SIGNAL IS REPRODUCED but

there are still many free parameters

COLLECTION PROCESS IS
RESPONSIBLE FOR SOLAR
CELLS NON LINEARITY

RESULTS 4 - Irradiation

 ^{84}Kr beam at 15 AMeV

Conclusions & Future Prospectives

Solar Cells remain an interesting alternative to Silicon Detectors for heavy ions beams at energies > 1 AMeV!!

Main Results:

- 1) $\frac{20\times20 \text{ Ge substrat}}{20\times20 \text{ Ge substrat}}$ the best performances in Energy ($\sigma(E)/E=1.1\%$ RMS) and Time Resolution (2.6 ns)
- 2) The Response of Solar Cells have been characterized up to 15 AMeV for ^{84}Kr :
 - Simulations are able to reproduce Solar Cells signal
- 3) Long Irradiation Test: Better behaviour of Solar Cells with respect to Silicon Detector (for time response)
 - VERY IMPORTANT FOR USE IN UHV!

SOLAR CELLS ARE WELL SUITED FOR NECTAR project but also for other experiments with heavy ions

Ye & Kr beams U beam Confirm experimentally our predictions Digitize Solar Cells signal Preamplifier system: Final optimization stage explore Solar Cells possibilities as beam like residues detectors

.....Thank you for your work

Collaborators:

J.C. Thomas², J. Pibernat¹, B. Jurado¹, J. Michaud¹, J. Swartz¹, B. Jacquot² J. Giovinazzo¹, B. Thomas¹, P. Alfaurt¹, T. Chiron¹

1 Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), CNRS/IN2P3, Gradignan, France 2 Grand Accélérateur National d'Ions Lourds (GANIL), Caen, France

.....Thank you for your attention

•••••

December 8, 2021

*This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715).

Backup Slides

E809 experiment(March 2021) -

RESULTS

PRELIMINARY RESULTS

1) 84-Kr 3 AMeV
2) 84-Kr 5 AMeV
3) 84-Kr 7 AMeV
4) 84-Kr 10
AMeV
5) 84-Kr 15
AMeV

E809 experiment(March 2021) -

RESULTS 4 - Irradiation

 ^{84}Kr beam at 15 AMeV

Amplitude Spectra as function of real time

Solar Cells: Ge 20x20 mm2 ----> rate 5 KHz

Amplitude & Time Spectra before and after the irradiation

Solar Cells: Ge 20x20 mm2 ----> rate 5 KHz

Measurements realized at low rate $\sim 50~Hz$

Time Spectra as function of real time

Solar Cells: Ge 20x20 mm2 ----> rate 5 KHz

