

Determining neutron-induced reaction cross sections through surrogate reactions at storage rings

J. A. Swartz

8 December 2021

1st Low Energy Nuclear Physics Meeting (PhyNuBE),

Centre Paul Langevin, Aussois, France

The NECTAR project - determine neutron-induced reaction cross sections

• Focus on short-lived nuclei, of interest to:

Applications (e.g. nuclear energy, medicine)

Nuclear astrophysics

1/28

Nuclear medicine

Nuclear energy

→ One way: a neutron beam on a radioactive target:

→ One way: a neutron beam on a radioactive target:

→ Then, in inverse kinematics on neutron target?

 P_{γ}

 P_{γ}

→ An alternative approach

$$\mathsf{P}_{\gamma}$$

$$P_f + P_v + P_n = 1$$

→ An alternative approach

R. Perez Sánchez, B. Jurado et al., PRL 125, 122502 (2020)

 240 Pu(4 He, 4 He') 240 Pu* as surrogate reaction for $n+^{239}$ Pu \rightarrow 240 Pu*

Limitations:

- Target radioactivity, contaminants and target support
- P_v efficiency
- P_n: low-energy neutrons and efficiency

R. Perez Sánchez, B. Jurado et al., PRL 125, 122502 (2020)

 240 Pu(4 He, 4 He') 240 Pu* as surrogate reaction for $n+^{239}$ Pu \rightarrow 240 Pu*

Limitations:

- Target radioactivity, contaminants and target support
- P_v efficiency
- P_n: low-energy neutrons and efficiency

..Surrogate reactions in inverse kinematics

Advantages:

- Access to very short-lived nuclei
- Detection of heavy residues (high efficiency)

R. Perez Sánchez, B. Jurado et al., PRL 125, 122502 (2020)

Limitations:

- Target radioactivity, contaminants and target support
- P_v efficiency
- P_n: low-energy neutrons and efficiency

..Surrogate reactions in inverse kinematics

Advantages:

- Access to very short-lived nuclei
- Detection of heavy residues (high efficiency)

R. Perez Sánchez, B. Jurado et al., PRL 125, 122502 (2020)

neutron

γ-ray detectors

Surrogate reaction experiments, in direct kinematics

Limitations:

- Target radioactivity, contaminants and target support
- P_v efficiency
- P_n: low-energy neutrons and efficiency

..Surrogate reactions in inverse kinematics

Advantages:

- Access to very short-lived nuclei
- Detection of heavy residues (high efficiency)

R. Perez Sánchez, B. Jurado et al., PRL 125, 122502 (2020)

⁴He

Beam of light nuclei

Beam-like residue

Fission Detector

But how do we reach the energy resolution required? E*~ few 100 keV

Experiments at storage rings of GSI/FAIR

Advantages:

- Excellent excitation energy resolution possible through low-density gas jet target and electron cooling.
- Frequency compensates for thin target.
- No target contaminants or window.
- \triangleright Challenge: UHV of the ring (P \sim 10⁻¹¹ 10⁻¹² mbar)

The ESR storage ring at GSI

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- 208 Pb(p,p') 208 Pb* reaction as surrogate for n+ 207 Pb \rightarrow 208 Pb*

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- 208 Pb(p,p') 208 Pb* reaction, measure 208 Pb* \rightarrow 208 Pb+ γ (P $_{\gamma}$) and 208 Pb* \rightarrow 207 Pb+n (P $_{n}$)

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- 208 Pb(p,p') 208 Pb* reaction, measure 208 Pb* \rightarrow 208 Pb+ γ (P $_{\gamma}$) and 208 Pb* \rightarrow 207 Pb+n (P $_{n}$)

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- 208 Pb(p,p') 208 Pb* reaction, measure 208 Pb* \rightarrow 208 Pb+ γ (P $_{\gamma}$) and 208 Pb* \rightarrow 207 Pb+n (P $_{n}$)

18/28

NECTAR PoP experiment

Target residue detectors:

• 20×20 mm² DSSSDs (16×16 strips) + 6*1.5 mm Si detectors.

Pocket front window

Frame for telescope detector in pocket

NECTAR PoP Simulations

Target residue detectors:

• $\sigma(E^*) = 200 \text{ keV}$ at $E^* = 2.6 \text{ MeV}$, for target radius = 0.5 mm, Beam emittance = 0.05 mm.rad

NECTAR PoP experiment

Heavy residue detectors:

• 122×40 mm² DSSSDs

NECTAR PoP experiment

Heavy residue detectors:

• 122×40 mm² DSSSDs

NECTAR Pop Simulations

Heavy residue detectors:

- Simulations indicate n + 207Pb and $\gamma + 208$ Pb peaks to be well separated.
- Over 99% transmission efficiency!

NECTAR PoP experiment

Future possibility:

May use **solar cells** here.

- See talk from M. Sguazzin

Ge solar cells

Heavy residue detectors:

• 122×40 mm² DSSSDs

PoP experiment – coming to ESR@GSI June 2022

Outlook:

- **NECTAR PoP experiment coming to ESR@GSI June 2022**
- NECTAR experiments featuring fission detection coming ca. 2024 at GSI/FAIR

electron cooler

Outlook:

NECTAR PoP experiment – coming to ESR@GSI June 2022

20

- NECTAR experiments featuring fission detection coming ca. 2024 at GSI/FAIR
- 1st full experiment
 238U + d at E = 10 AMeV.
- Isotopic chains of interest:
- U, Th, Np etc.
- Multitude of short-lived nuclei

Years and years of physics!

Acknowledgement of support

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715).

The NECTAR Collaboration

CENBG (E	Bordeaux)
----------	-----------

B. Jurado (PI)

J. Pibernat (technical lead)

J.A. Swartz

M. Sguazzin

B. Thomas

M. Roche

P. Alfaurt

J. Giovinazzo

J. Michaud

B. Blank

M. Gerbaux

S. Grevy

T. Kurtukian

MPIK Heidelberg

M. Grieser

K. Blaum

GSI/FAIR Darmstadt

J. Glorius

Y. Litvinov

CEA/DAM

M. Dupuis

L. Gaudefroy

V. Méot

O. Roig

University of Frankfurt

R. Reifarth

Thank you for listening! To be continued..

Backup slides

MBS DAQ system with electronic modules from GSI and Mesytec

NECTAR PoP experiment electronics & DAQ

NECTAR PoP experiment

Beam: ²⁰⁸Pb at 30 MeV/u

Target: ¹H

PoP preparation status summary:

- Detector pockets manufactured
- Final detector specifications and manufacturing
- Testing electronics and data acquisition system at CENBG
- Refining simulations

NECTAR PoP experiment – coming to ESR@GSI June 2022

- Master electronics and DAQ system, and test with detectors.
- Move detectors and electronics to GSI to commence testing there.
- Final setup and execution of experiment in June 2022

NECTAR PoP experiment

Measure P_γ, P_n

Beamtime 20 - 25 June 2022

NECTAR final setup:

• Measure P_{γ} , P_{n} , P_{f} (with solar cells) Not yet scheduled, TDR being submitted to GSI/FAIR ECE + GPAC

Decay probabilities for fission (blue squares) and γ emission (red triangles) measured for the ²⁴⁰Pu(⁴He, ⁴He')²⁴⁰Pu reaction as a function of the excitation energy E of ²⁴⁰Pu. The sum of the two probabilities is given by the black circles.

R. Perez Sánchez, B. Jurado et al., PRL 125, 122502 (2020)

NECTAR PoP experiment

Top-view diagram of reaction chamber

X-ray measurements with HPGe detectors of GSI.

Target residue detectors:

• 20×20 mm² DSSSDs (16×16 strips) + 6*1.5 mm Si detectors.

NECTAR PoP experiment

Target residue detectors:

- E resolution improves with smaller gas jet.
- Smaller pixel size may help at low radius.

1.5 mm gas jet radius

0.5 mm gas jet radius Emittance = 0.05 mm.mrad

$$\sigma_{n,\chi}(E_n)\cong\sigma_{\mathrm{CN}}(E_n)P_{s,\chi}(E^*)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
 n-induced CS CS for CN formation Probability

$$E_n = \frac{A+1}{A}(E^* - S_n)$$

Why don't we simply use a neutron beam on a radioactive target?

- Target handling safety.
- Background from target radioactivity.
- Scattering of beam neutrons.

Why don't we work in direct kinematics?

- Nuclei of interest are radioactive/unavailable.
- Competing reactions in target contaminants and backing.
- Heavy decay products of compound nucleus are stopped in the target.

Hence, we will use surrogate reactions in inverse kinematics, with heavy nuclei in the beam and light nuclei in a gas jet target.

NECTAR – Nuclear rEaCTions At storage Rings

Light targets (e.g. ¹H, ²H) to be put in gas jet targets

- Would this provide enough areal density of target?
- Not in a single-pass experiment.
- But this is a storage ring experiment!

NECTAR – Nuclear rEaCTions At storage Rings

Light targets (e.g. ¹H, ²H) to be put in gas jet targets

- Would this provide enough areal density of target?
- Not in a <u>single-pass experiment</u>.
- But this is a storage ring experiment!

Experiments at storage rings of GSI/FAIR

Light targets (e.g. ¹H, ²H) to be put in gas jet targets

- Would this provide enough areal density of target?
- Not in a <u>single-pass experiment</u>.
- But this is a storage ring experiment! => UHV

NECTAR – Nuclear rEaCTions At storage Rings

Light targets (e.g. ¹H, ²H) to be put in gas jet targets

- Would this provide enough areal density of target?
- Not in a single-pass experiment.
- But this is a storage ring experiment!

What about e⁻ capture and emission?

- Storage rings => Ultra High Vacuum (UHV) where $P \sim 10^{-11} 10^{-12}$ mbar,
- and we have fully stripped ions.

NECTAR Proof-of-Principle (PoP) experiment – June 2022

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- Measure P_v and P_n from ²⁰⁸Pb

Target residues (p) measured here.

Heavy residues (207,208Pb) measured here.

No fission detection in PoP experiment, but see the talk from M. Sguazzin.

NECTAR

- First PoP experiment at ESR 20 25 June 2022.
- CRYRING experiments planned for the future.

In HF formalism, with i=s or i=n

ENBG CNTS

In HF model, where i=s or i=n

At high E*, $G\chi$ becomes independent of J^{π}

$$=>P_{s,\chi}\approx P_{n,\chi}$$
 and

$$\sigma_{n,\chi}(E_n) \cong \sigma_{\mathrm{CN}}(E_n) P_{s,\chi}(E^*)$$
 n-induced CS CS for CN formation Decay probe
$$E_n = \frac{A+1}{A}(E^*-S_n)$$

In HF formalism, with i=s or i=n

At high E*, G_{χ} becomes independent of J^{π} => $P_{s,\chi} \approx P_{n,\chi}$ and

- This approach is not valid in all cases.
- One can always constrain level densities, fission barrier though.

$$E_n = \frac{A+1}{A}(E^* - S_n)$$

Probabilities in Step 2 identical for n vs surrogate at Step 1, according to Bohr Independence Formalism.

But, spin-parity at Step 1 still has an effect.

- This cancels out at high energies with high density of states.
- At low energies it does not, but we can measure observables (level density, fission barrier) which constrain this CS.

