

Development of a device for *ps* lifetime measurements at FIPPS phase 2

Giacomo Colombi

Caterina Michelagnoli (ILL) Joa Ljungvall (IJCLab Orsay) Jérémie Dudouet (IP2I Lyon) Silvia Leoni (UniMi)

The A~100 island of deformation

- Neutron rich nuclei with A~100 (Z~45, N~60) exhibit drastic shape changes
- First observed for Zr (1970)
- Lifetimes measurements give access to the transition strengths which are needed to test and constrain theoretical models

$$B(E2) = \frac{0.081642 B_i}{\tau[ps] (E_{\nu}[MeV])^5 (1+\alpha)}$$

$$R_{4/2} = \frac{E_{4^+}}{E_{2^+}}$$

Production of neutron-rich nuclei via fission

Mass region A~100 strongly populated via nuclear fission reactions

Institut Laue-Langevin (ILL)

Grenoble, France

- European research facility specialised in neutron science
- Nuclear reactor with 58.3 MW thermal power
- Most intense continuous neutron flux in the world – 1.5 × 10¹⁵ n s⁻¹ cm⁻²

The FIPPS instrument at ILL

FIssion Product Prompt gamma-ray Spectrometer

- 8 Compton suppressed HPGe clover detectors
- Pencil-like (d=15mm) thermal neutron beam, with a flux of 10⁸ n s⁻¹ cm⁻² at target position
- Possibility to add ancillary devices (LaBr₃, HPGe clovers...)
- (n,γ) and (n,F) reactions on stable and radioactive targets

Complex level scheme

What we want to know

High energy resolution and efficiency are essential

What we measure

²¹⁰Bi level scheme

Coincidence method Walter Bothe Nobel prize 1954

Geant4 Monte Carlo simulations and FIPPS efficiency

- Geant4 simulations to reproduce experimental campaigns and study the feasibility of future experiments
- Validated with the ¹⁵²Eu efficiency curve
- Efficiency curve up to 8 MeV thanks to (n,γ) reactions

Angular correlation measurements at FIPPS+IFIN array

 γ - γ angular correlations in a γ -ray cascade: evaluation of the coincidence intensity variation as a function of the detection angle

Determination of the average interaction point in a clover detector with a ¹⁵²Eu Geant4 simulation

Angular correlation measurements at FIPPS+IFIN array

Geometrical correction factors (Q_i) found thanks to Geant4 Monte Carlo simulations and compared with experimental ones

$$W(\theta) = A_0[1 + a_2Q_{i2}P_2(\cos\theta) + a_4Q_{i4}P_4(\cos\theta)]$$

	Q_2 F-F	Q_4 F-F	Q_2 F-I	Q_4 F-I	Q_2 I-I	Q ₄ I-I
Exp. data Simulations	, ,	, ,	3 /	, ,	, ,	, ,

G. Colombi *et al.*, Paper in preparation

Angular correlation measurements at FIPPS+IFIN array

Application of the method to analyze the neutron induced fission data from the ²³⁵U *active target* campaign

D. Reygadas, PhD Thesis, Univ. Grenoble Alpes, 2021

Lifetime measurements at FIPPS

- The measurement of the lifetime allows the determination of the transition strength, sensitive on the details of nuclear wave functions
- The timescale of interest defines the measurement method

Doppler Relation:

$$E_{\gamma}' = E_{\gamma} \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \theta}$$

The *plunger* device

- The intensities of the two peaks in the gamma spectrum change as a function of the target-to-degrader distance
- Ongoing development of the **first** prototype of plunger device to be used at a neutron beam in n-induced fission reaction

The *plunger* device at a neutron beam

Reconstructed fission fragments mass distribution from simulated ²⁵²Cf source

Design and simulation of the fission fragment detection system which allows to have a mass resolution of 3-5 amu

→ Study of already existing fission fragment spectrometers (VERDI, FALSTAFF, SPIDER...)

The plunger device at a neutron beam

Counts

2000

1000

Simulation of 104 Mo de-excitation in flight with a degrader foil at 15, 322.5 and 4630 μm

→ Doppler corrected spectra in forward and backward detectors

355

360

365

370

J. Phys. G: Nucl. Part. Phys. 28 2307

EUROPEAN NEUTRON SOURCE

2000

1000

A.G. Smith et al. 2002,

2000

1000

Conclusions and perspectives

- The FIPPS gamma-ray spectrometer at ILL has been introduced, used for highresolution spectroscopy after neutron induced reactions
- Different FIPPS setups can be described by Geant4 simulations (code developed during my 1st year of PhD)
- My PhD work focuses on the measurement of ps nuclear level lifetimes using the recoil distance Doppler shift technique with the plunger device → first application at a neutron beam
- I am presently designing a plunger setup to be used with a 252 Cf spontaneous fission source to explore the A=100-110 nuclear region
- The commissioning and following experiments are foreseen for the end of 2022 (soon a call for Letters of Intent will be sent out)

Variation of Q₄ geometrical correction factor changing the dimensions and position of the source in the

simulation

Q4 F-F

Angular correlation done with the crystal position instead of the clover position

IFIN backwards [angles 120-150 deg] FIPPS ring (not plotted) [angles 75-105 deg]

IFIN forwards [angles 30-60 deg]

Fission fragments direction

Reconstructed mass distribution of simulated ¹⁰⁴Mo fission fragments

→ Division of the PIPS detector in segments to see the granularity needed

Simulation of 104 Mo de-excitation in flight with a degrader foil at 15, 322.5 and 4630 μ m

→ Not Doppler corrected spectra in forward and backward detectors

Active target

- Suppress γ-ray induced β background
- Actinide material dissolved in liquid scintillator
- Campaign at FIPPS in 2018
- 97.8(25)% fission tagging efficiency

- 1 Aluminium frame 2&5 - Sapphire windows (0.2 mm)
- 3 Teflon spacer (0.5 mm) with capillaries
- 4 Teflon backing with reflective foil
- 6 Teflon washer

I – Fission events, II – Electron events

Active target

Gate 1313 keV transition ($2^+ \rightarrow 0^+$) in 136 Xe Fission partners: 97 Sr, 98 Sr and 99 Sr

Active target

Collective excitations and nuclear shapes

$$R_{4/2} = \frac{E_4^+}{E_2^+}$$

Shape changes in nuclei with A=100-110

