Development of a device for $p s$ lifetime measurements at FIPPS phase 2

Giacomo Colombi

Caterina Michelagnoli (ILL) Joa Ljungvall (IJCLab Orsay) Jérémie Dudouet (IP2I Lyon) Silvia Leoni (UniMi)

The A~100 island of deformation

- Neutron rich nuclei with A~100 (Z~45, N~60) exhibit drastic shape changes
- First observed for Zr (1970)
- Lifetimes measurements give access to the transition strengths which are needed to test and constrain theoretical models

$$
B(E 2)=\frac{0.081642 B_{i}}{\tau[p s]\left(E_{\gamma}[\mathrm{MeV}]\right)^{5}(1+\alpha)}
$$

$$
R_{4 / 2}=\frac{E_{4^{+}}}{E_{2^{+}}}
$$

Production of neutron-rich nuclei via fission

Institut Laue-Langevin (ILL)

Grenoble, France

- European research facility specialised in neutron science
- Nuclear reactor with 58.3 MW thermal power
- Most intense continuous neutron flux in the world - $1.5 \times 10^{15} \mathrm{n} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$

The FIPPS instrument at ILL

FIssion Product Prompt gamma-ray Spectrometer

- 8 Compton suppressed HPGe clover detectors
- Pencil-like ($\mathrm{d}=15 \mathrm{~mm}$) thermal neutron beam, with a flux of $10^{8} \mathrm{n} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ at target position
- Possibility to add ancillary devices (LaBr_{3}, HPGe clovers...)
- (n, Y) and ($n, F)$ reactions on stable and radioactive targets

C. Michelagnoli et al.,

EPJ Web Conf., 193 (2018) 04009

Complex level scheme

What we want to know
High energy resolution and efficiency are essential

Geant4 Monte Carlo simulations and FIPPS efficiency

- Geant4 simulations to reproduce experimental campaigns and study the feasibility of future experiments
- Validated with the ${ }^{152}$ Eu efficiency curve
- Efficiency curve up to 8 MeV thanks to (n, Y) reactions

Angular correlation measurements at FIPPS+IFIN array

$\gamma-\gamma$ angular correlations in a γ-ray cascade: evaluation of the coincidence intensity variation as a function of the detection angle

$$
W(\theta)=A_{0}\left[1+a_{2} Q_{i 2} P_{2}(\cos \theta)+a_{4} Q_{i 4} P_{4}(\cos \theta)\right]
$$

Determination of the average interaction point in a clover detector with a ${ }^{152}$ Eu Geant4 simulation

Angular correlation measurements at FIPPS+IFIN array

Geometrical correction factors $\left(Q_{i}\right)$ found thanks to Geant4 Monte Carlo simulations and compared with experimental ones

$$
W(\theta)=A_{0}\left[1+a_{2} Q_{i 2} P_{2}(\cos \theta)+a_{4} Q_{i 4} P_{4}(\cos \theta)\right]
$$

	$\mathrm{Q}_{2} \mathrm{~F}-\mathrm{F}$	$\mathrm{Q}_{4} \mathrm{~F}-\mathrm{F}$	Q_{2} F-I	$\mathrm{Q}_{4} \mathrm{~F}-\mathrm{I}$	$\mathrm{Q}_{2} \mathrm{I}-\mathrm{I}$	$\mathrm{Q}_{4} \mathrm{I}-\mathrm{I}$
Exp. data	$0.856(12)$	$0.68(3)$	$0.89(2)$	$0.66(4)$	$0.84(3)$	$0.75(8)$
Simulations	$0.883(8)$	$0.677(4)$	$0.91(2)$	$0.725(6)$	$0.96(3)$	$0.724(12)$

G. Colombi et al.,

Paper in preparation

Angular correlation measurements at FIPPS+IFIN array

Application of the method to analyze the neutron induced fission data from the ${ }^{235} \mathrm{U}$ active target campaign

90 Kr : 707-655 keV (2+ $\mathbf{2 l}^{+} \rightarrow 0+$)

D. Reygadas, PhD Thesis,

Univ. Grenoble Alpes, 2021

Lifetime measurements at FIPPS

- The measurement of the lifetime allows the determination of the transition strength, sensitive on the details of nuclear wave functions
- The timescale of interest defines the

$$
B(E 2)=\frac{0.081642 B_{i}}{\tau[p s]\left(E_{\gamma}[\mathrm{MeV}]\right)^{5}(1+\alpha)}
$$

measurement method

Doppler Relation:

$$
E_{\gamma}^{\prime}=E_{\gamma} \frac{\sqrt{1-\beta^{2}}}{1-\beta \cos \theta}
$$

The plunger device

The plunger device at a neutron beam

Reconstructed fission fragments mass distribution from simulated ${ }^{252} \mathrm{Cf}$ source

Design and simulation of the fission fragment detection system which allows to have a mass resolution of 3-5 amu
\rightarrow Study of already existing fission fragment spectrometers (VERDI, FALSTAFF, SPIDER...)

The plunger device at a neutron beam

A.G. Smith et al. 2002,

Simulation of ${ }^{104}$ Mo de-excitation in flight with a degrader foil at 15, 322.5 and $4630 \mu \mathrm{~m}$
\rightarrow Doppler corrected spectra in forward and backward detectors

322.5 um

4630 um

J. Phys. G: Nucl. Part. Phys. 282307

> .

Conclusions and perspectives

- The FIPPS gamma-ray spectrometer at ILL has been introduced, used for highresolution spectroscopy after neutron induced reactions
- Different FIPPS setups can be described by Geant4 simulations (code developed during my $1^{\text {st }}$ year of PhD)
- My PhD work focuses on the measurement of ps nuclear level lifetimes using the recoil distance Doppler shift technique with the plunger device \rightarrow first application at a neutron beam
- I am presently designing a plunger setup to be used with a ${ }^{252} \mathrm{Cf}$ spontaneous fission source to explore the $A=100-110$ nuclear region
- The commissioning and following experiments are foreseen for the end of 2022 (soon a call for Letters of Intent will be sent out)

Thank you for listening!

Variation of Q_{4} geometrical correction factor changing the dimensions and position of the source in the
Q4 F-F simulation

Angular correlation done with the crystal position instead of the clover position

Reconstructed mass distribution of simulated ${ }^{104} \mathrm{Mo}$ fission fragments
\rightarrow Division of the PIPS detector in segments to see the granularity needed

Simulation of ${ }^{104}$ Mo de-excitation in flight with a degrader foil at 15, 322.5 and $4630 \mu \mathrm{~m}$
\rightarrow Not Doppler corrected spectra in forward and backward detectors

Active target

- Suppress γ-ray induced β background
- Actinide material dissolved in liquid scintillator
- Campaign at FIPPS in 2018
- $97.8(25) \%$ fission tagging efficiency

I - Fission events, II - Electron events

Active target

Gate 1313 keV transition ($2^{+} \rightarrow 0^{+}$) in ${ }^{136} \mathrm{Xe}$ Fission partners: ${ }^{97} \mathrm{Sr},{ }^{98} \mathrm{Sr}$ and ${ }^{99} \mathrm{Sr}$

Active target

Collective excitations and nuclear shapes

$$
R_{4 / 2}=\frac{E_{4^{+}}}{E_{2^{+}}}
$$

Nucleon number

Shape changes in nuclei with $A=100-110$

Seconds	
- $10+15$	10-01
$10+10$	10-02
10+07	10-03
10+05	10-04
$10+04$	10-05
10+03	10-06
10+02	10-07
10+01	10-15
10+00	< $10-15$
unknown	

Evidence of drastic shape transitions

