

Approximation of Cross-correlations between Galaxy Clustering spectroscopic and Photometric probes

Fabien DOURNAC

Supervised by Alain BLANCHARD

IRAP/Université Paul Sabatier

Ateliers Dark-Energy - May 20th, 2020

Outline

I. Recall : Galaxy Clustering (GC) spectro and Photometric probes (GC and WL)

II. Methodology of our study in EUCLID survey

III. Results

IV. Conclusion

- 3 Primary cosmological probes for EUCLID survey :
 - Galaxy Clustering Spectro (GCsp) probe : 3D distribution of galaxies
 - Photometric probes : 2D distribution
 - Galaxy Clustering Photo (GCph)
 - Weak lensing (WL)

Credits : CNES

 $\Rightarrow \text{ Determining the Dark Energy E.o.S by}$ Chevallier-Polarski-Linder (CPL) parametrization : Z_{i}

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

 Goal : Reach at least a dark energy Figure of merit (FoM) > 400.

- How to get constraints on different cosmological parameters without experimental data ? By Forecast and Fisher formalism
- Forecast = estimating the performances of a future experiment for which data aren't yet available (Fisher 1935).
- 2 approaches :
 - Fisher formalism [fast doesn't need any data but limited].
 - Monte Carlo Markov Chain (MCMC) [slow, performing at low or average dimensions problem. More tricky at high dimensions].

 \Rightarrow Here in our study, we consider only Fisher formalism for GCsp, GCph and WL probes

- The Fisher matrix represents information on all cosmological parameters and their interdependence
- The Covariance matrix is by definition equal to the inverse of the Fisher matrix: we can therefore deduce the variance of a parameter and the covariance between 2 parameters
- Performance criterion Figure of Merit (FoM): evaluates the accuracy on the uncertainties proportional to the inverse of the area of the contours on the parameters (w_0, w_a)

- Filled disk : 1σ C.L
- Contour : 2σ C.L
- \implies In our study, FoM computed by :
- SpecSAF code for GCsp
- XSAF code for GCph, WL and crosscorrelations (3x2pt)

Ateliers Dark Energy - Approximation of Cross-correlations between GC spectro and Photometric probes 4/9

Methodology of our study in EUCLID survey

GCsp covers a range • GCph covers 0.001 < z < 2.5z_bins = [$z_bins = [$ [0.001, 0.418],[0.9, 1.1],0.9 < z < 1.8[0.418, 0.560],with 10 bins photo \Rightarrow [1.1, 1.3],[0.560, 0.678], [1.3, 1.5],[0.678, 0.789], with 4 bins spectro \Rightarrow [1.5, 1.8], [0.789, 0.900],] [0.900, 1.019],[1.019, 1.155],

[1.155, 1.324],

[1.324, 1.576],

[1.576, 2.500],

]

- Principle of our analysis : we sample GCsp and GCph on a same volume. One takes the same bin of *z* for photometric/spectro to get rid off the Dark Matter Power Spectrum, so biais ratio is constant (ratio chosen here = 1) :
 - at $z = z_1 : P_{gal,sp}(k, z) = b_1^2 P_{DM}(k, z)$ • at $z = z_2 : P_{gal,ph}(k, z) = b_2^2 P_{DM}(k, z)$ $\Rightarrow \begin{cases} \frac{P_{gal,sp}}{P_{gal,ph}} = \left(\frac{b_1}{b_2}\right)^2 = constant = 1 \end{cases}$
 - \Rightarrow We can start from z = 0.9 for the 2 probes
 - \Rightarrow Need to apply a split for GCph at z = 1.8 to get a common interval : one creates a 11th photo bin and a 5th spectro bin \Rightarrow Finally, remains 5 bins (and so 5 bias)

• FoM in Pessimistic/Optimistic cases :

Gain factor about 30% and 50% FoM in Pessimistic/Optimistic cases

 \Rightarrow Finally, our approach improves significantly the Figure of Merit

 \Rightarrow Actually, this study is a first step into the synthesis of cross-correlation between photo and spectro since we still don't know how to do cross-correlations between GCsp and Photometric probes (2D + 3D)

1)	New specifications Bias independent : (5 bias spectro) : GCs + (GCp + WL + XC)	FoM (Pessimistic/Optimistic)	571.35	1239.43
2)	Unique bias : Bias dependent : 5 last before bias photo in extended case (11) = 5 bias spectro : same variables GCs + (GCp + WL + XC)	FoM (Pessimistic/Optimistic)	781.09	1565.86

Results

- Triplot showing joint distribution and Likelihood :
- can notice anti-correlation for (w_0, w_a)
- Hubble constant very well constrained
- For some joint parameters, useful information : For example (Ω_m, σ_8)
- For some joint parameters, useless information : For example (h, n_s)

Ateliers Dark Energy - Approximation of Cross-correlations between GC spectro and Photometric probes 7/9

Results

- One single plot showing joint distribution and Likelihood for (w₀, w_a) : Optimistic case
- Compensation effect for (w_0, w_a) :
 - $\Rightarrow \text{when } w_0 \text{ decreasing,}$ $w_a \text{ increasing and}$ inversely

Ateliers Dark Energy - Approximation of Cross-correlations between GC spectro and Photometric probes 8/9

- We present here a way to get an approximation of what could be the crosscorrelations between spectroscopic Galaxy Clustering and Photometric probes
- Similarities with Multi-tracers approaches : ratio of bias can be fixed or depending of different populations or samples. We can say this is a multitracers study with angular probes
- This method should be integrated in future survey to obtain the approximation of combination Spectro/Photo probes since FoM is improved by ~ 30 up 50 %