

Cosmological parameters from Strong-Lensing in galaxy-clusters

Eric Jullo

Laboratoire d'Astrophysique de Marseille

THE BROAD PICTURE

Dark energy

• Explains the recent acceleration of Universe expansion

Slows down the formation of cosmological structures

TODAY'S RESULTS ON DE

Planck measurements are at z ~ 1100, but Ω_m is calculated at z = 0 with a DE model (e.g. wCDM)

=> dependency w -- $\Omega_{\!m}$ in Planck results

Dark Energy Survey Collab., Troxel et al. 2018

STRONG GRAVITATIONAL LENSING

4

HOW TO IDENTIFY MULTIPLE IMAGES?

Extreme distortion: Giant arcs are the merging of 2 or 3 (or possibly more) multiple images

> Giant arc in Cl2244-04, z=2.24, Septuple image

HOW TO IDENTIFY MULTIPLE IMAGES?

Color and Morphology:

Lens model can help for the identification when different solution are possible

Finding multiple images in clusters :

- is an iterative process
- make take several weeks of computing time
- requires confirmation by multiple groups of people

STRONG LENSES MODELS

Problem

How to reproduce the observed multiple images?

We maintain a public lensing code called LENSTOOL¹

$$\phi_{tot} = \phi_{cluster} + \Sigma_i \phi^i_{halos}$$

Physicaly motivated models	Agnostic Grid-based models
Decomposition into halos + luminosity scal. rel. for the galaxies	Decomposition into pixels + luminosity scal. rel. for the galaxies
Simple clusters	Complex clusters (substruc., filaments)
Few contraints	Lots of constraints (SL and WL)
Good fit with few constraints	Better fit with lots of constraints

7

PROPERTIES OF GALAXIES IN CLUSTERS

Galaxies in clusters have similar formation history

Cluster galaxies have similar colors ⇒ color-magnitude diagram

Cluster galaxies follow:

- Faber-Jackson(1976) relation between velocity and luminosity
- Kormendy(1977) relation between size and luminosity

USUAL MATTER DENSITY PROFILES

Isothermal sphere

$$ho =
ho_0 / \tilde{R}$$

 $ho_0 = rac{\sigma^2}{2\pi G}$

$$\rho = \frac{\rho_0}{(1 + \frac{\tilde{R}^2}{r_c^2})(1 + \frac{\tilde{R}^2}{r_{cut}^2})} \\
\rho_0 = \frac{\sigma_{\infty}^2}{2\pi G r_c^2}$$

Navarro, Frenk, White (1996)

$$\rho = \frac{\delta_c \rho_c}{\frac{\tilde{R}}{r_s} (1 + \frac{\tilde{R}}{r_s})^2}$$
$$\delta_c = \frac{200}{3} \frac{c^3}{\ln(1+c) - c/(1+c)}$$

GALAXY SCALE COMPONENTS MODEL

• For each galaxy scale lens potential, we model the total (stars+DM) matter density profile.

• We assume the following scaling relation between galaxy luminosity and total subhalo mass (PIEMD model):

M

$$\sigma = \sigma_* \left(\frac{L}{L_*}\right)^{1/4} \qquad r_{cut} = r_{cut}^* \left(\frac{L}{L_*}\right)^{\eta}$$

• Hence:

$$\propto L^{\eta-1/2}$$
 $\eta=1/2$ Constant M/L $\eta=0.8$ FP scaling

See Paraficsz et al. 2016

SOME CLUSTERS MODELED WITH LENSTOOL

⇒ About 60 strong-lensing models available on Lenstool webpage

COSMOLOGY WITH STRONG LENSING

EFFICIENCY RATIO E=DLS/DOS

COSMOGRAPHY WITH ABELL 1689

Made possible thanks to:

- Many previous models and multiple image identifications
- Massive spectroscopic surveys (2003-2006) [Richard et al 2011]
- ➤ 43 multiple image systems, 24 with spectro-z with 1.1 < z < 4.9</p>

Broadhurst et al 2005 Halkola et al 2007 Limousin, et al. 2007 Richard et al. 2007 Frye et al 2007 Leonard et al 2007 Jullo & Kneib 2009 Coe et al 2010

X KECK/LRIS
X VLT/FORS
X CFHT/MOS
X MAGELLAN
/LDSS2
X Litterature

CURRENT CSL CONSTRAINTS ON WCDM MODEL

- 12 sources, 43 multiple images
- 24 z-spec in redshift range 1 < z < 5

- 16 sources, 47 multiple images
- 24 z-spec in redshift range 1 < z < 6

=> Constraints depend on discarding outliers, and estimating model uncertainties

ALTERNATIVE DARK ENERGY MODELS

UNSOLVED ISSUES ...???

SL model disagrees with other probes => Lens model systematic error?

Sometimes, other probes disagree => Cosmological information or modelling systematics?

GALAXY MODELING UNCERTAINTIES

$$\begin{cases} \sigma_0 = \sigma_0^{\star} \left(\frac{L}{L^{\star}}\right)^{1/4}, \\ r_{\text{core}} = r_{\text{core}}^{\star} \left(\frac{L}{L^{\star}}\right)^{1/2} \\ r_{\text{cut}} = r_{\text{cut}}^{\star} \left(\frac{L}{L^{\star}}\right)^{\alpha}. \end{cases}$$

parameters +20% scatter

PIEMD

The total mass of a subhalo scales then as:

 $M = (\pi/G)(\sigma_0^{\star})^2 r_{\text{cut}}^{\star} (L/L^{\star})^{1/2+\alpha},$

1.7.4

For A1689, this lead to a scatter on the image position of ~ 1 kpc ~ 0.25''

=> Scatter different for each image

=> Images must be weighted in χ^2 INDIVIDUALLY (not the usual approach). Specific to each cluster

Simulations: D'Aloisio & Natarajan 2010

CURRENT OBSERVATIONAL KNOWLEDGE

Strong lensing in clusters allows to constrain the M/L ratio of satellite galaxies (i.e. cluster member galaxies)

Natarayan et al. 2017 $\sigma_0 = \sigma_0^{\star} \left(\frac{L}{L^{\star}}\right)^{1/4} \qquad r_{\rm cut} = r_{\rm cut}^{\star} \left(\frac{L}{L^{\star}}\right)^{\alpha}$ $M = (\pi/G)(\sigma_0^{\star})^2 r_{\rm cut}^{\star} (L/L^{\star})^{1/2+\alpha}$ 10^{3} iCluster Zoom in $0.5R_{vir}$ A2744 FJ Scaling A2744 Illustris Scaling 10² n(subhalos) 10^{1} 10⁰⊾ 9.0 11.5 12.0 12.5 13.0 9.5 10.5 11.010.0 $\log(M_{sub}/M_{\odot})$

=> Better agreement with Illustris empirical scaling

>150 multiple images in HST Frontier Field cluster, Jauzac et al. 2014

However, some uncertainties remain

Projected radial distances mismatch

Outliers in the luminosity – σ_{ap} scaling relation => They can bias the lensing models

UNACCOUNTED STRUCTURES : LINE OF SIGHT

 \Rightarrow Agreement that line of sight structures effect is RMS ~ 0.3", similar to galaxy scatter

INFALLING STRUCTURES

ARES simulation (Meneghetti et al. 2016)

COSMOLOGICAL FORECASTS

Gilmore & Natarajan 2009

NEW SL DATASETS: BUFFALO

100 HST orbits to observe the outskirt of 6 massive HST Frontier Field clusters (PI. Steinhardt, Jauzac)

- Observations in 5 HST bands, 12 x 6 arcmin²
- Prepare a statistical sample of galaxies at z > 7, to submit to JWST
- Study the evolution of clusters and member galaxies
- Dark-matter properties
- Treasury program (immediately public data)
- Ancillary data from Spitzer, Chandra, XMM, etc.

FORTHCOMING SL DATASETS

The fraction of lenses in groups and clusters is 14% and 4%, respectively (Oguri et al. 2006)

Assuming Poisson limited lens galaxy subtraction, Collett et al. 2015 estimate

- Euclid should discover 170,000 lenses => 23,800 in groups, 6800 in clusters
- LSST should discover 120,000 lenses => 16,800 in groups, 4800 in clusters
- Spectroscopic follow-up with 4MOST (PI: Collett, proposal)

There are on-going work to detect lenses with machine-learning in Euclid and LSST (e.g. Metcalf et al. 2016)

CONCLUSIONS

- Gravitational lensing in clusters can test dark energy models
- Currently, we are limited by systematic errors:
 - cluster member galaxies
 - line-of-sight perturbations,
- Recent hydro-simulations help derive empirical models of galaxy evolution in clusters to solve cluster member galaxies problem
- We need to get prepared for the forthcoming observational data.