Constraints on Dynamical Dark Energy from the abundance of galaxies at high redshifts N. Menci Osservatorio Astronomico di Roma - INAF

Collaborators

M. Castellano, D. Elbaz, A. Fontana, F. Fortuni, E. Giallongo, A. Grazian, A. Lamastra, E. Merlin, N.G. Sanchez, P. Santini, T. Wang

Parametrise evolution of the DE Equation-of-state parameter

$$w(a) = w_0 + w_a (1 - a)$$

$$H^{2} = H_{0}^{2} \left[\Omega_{M} a^{-3} \Omega_{\Lambda} a^{-3(1+w_{0}+w_{a})} e^{3w_{a}(a-1)} \right]$$

The predicted abundance of massiva halos at a given redshift strongly depends on the growth factor at the corresponding cosmic time

$$\phi(M,t) \propto e^{-\frac{\delta_c^2}{\sigma(M)^2}\frac{1}{D(t)^2}}$$

$$\delta(a) = a \exp\left(\int_0^a \left[\Omega(a)^\gamma - 1\right] d\ln a\right)$$

 $\Omega(a) = \Omega_0 a^{-3} / (H(a)/H_0)^2 \qquad \text{Linder 2005}$ $\gamma = 0.55 + 0.05(1 + w(z=1))w(z=1) \ge 1$ $\gamma = 0.55 + 0.02(1 + w(z=1))w(z=1) < 1.$

 $D(t) \propto \delta(t)$ Normalized to the observed CMB fluctuations

The mass function of DM halos for different (w₀,w_a)

The mass function of DM halos constitutes and upper limit for the abundance of galaxies (galaxies cannot outnumber their DM halos)

The predicted abundance of massiva halos at a given redshift strongly depends on the growth factor at the corresponding cosmic time

$$\phi(M,t) \propto e^{-\frac{\delta_c^2}{\sigma(M)^2}\frac{1}{D(t)^2}}$$

$$\delta(a) = a \exp\left(\int_0^a [\Omega(a)^\gamma - 1] \, d \ln a\right)$$

 $\Omega(a) = \Omega_0 a^{-3} / (H(a)/H_0)^2$ $\gamma = 0.55 + 0.05(1 + w(z=1))w(z=1) \ge 1$ $\gamma = 0.55 + 0.02(1 + w(z=1))w(z=1) < 1.$

Linder 2005

The mass function of DM halos for different (w₀,w_a)

We measure the number density of massive galaxies with given M* at a given redshift

The mass function of DM halos for different (w₀,w_a)

We compute the associated DM mass M assuming an M*/M ratio

The mass function of DM halos for different (w₀,w_a) Assuming a M*/M ratio, tha observed abundance of galaxies with given stellar mass M* can be translated into an observational lower limit for the halo mass function.

Models predicting mass functions below such lower limit are excluded

The predicted abundance of massiva halos at a given redshift strongly depends on the growth factor at the corresponding cosmic time

$$\phi(M,t) \propto e^{-\frac{\delta_c^2}{\sigma(M)^2}\frac{1}{D(t)^2}}$$

Observed galaxies cannot Outnumber their host DM halos

The constraint provided by the measured abundance of massive galaxies depend on the M^*/M ratio

The smaller M*/M the tighter the constraints

The predicted abundance of massiva halos at a given redshift strongly depends on the growth factor at the corresponding cosmic time

$$\phi(M,t) \propto e^{-\frac{\delta_c^2}{\sigma(M)^2}\frac{1}{D(t)^2}}$$

$$\delta(a) = a \exp\left(\int_0^a [\Omega(a)^\gamma - 1] \, d \ln a\right)$$

$$\begin{split} \Omega(a) &= \Omega_0 a^{-3} / (H(a) / H_0)^2 \\ \gamma &= 0.55 + 0.05 (1 + w(z=1)) w(z=1) \geq 1 \\ \gamma &= 0.55 + 0.02 (1 + w(z=1)) w(z=1) < 1 \,. \\ \text{Linder 2005} \end{split}$$

The constraint provided by the measured abundance of massive galaxies depend on the M^*/M ratio

The smaller M*/M the tighter the constraints

The predicted abundance of massiva halos at a given redshift strongly depends on the growth factor at the corresponding cosmic time

$$\phi(M,t) \propto e^{-\frac{\delta_c^2}{\sigma(M)^2}\frac{1}{D(t)^2}}$$

$$\delta(a) = a \exp\left(\int_0^a [\Omega(a)^\gamma - 1] d \ln a\right)$$

$$\begin{split} \Omega(a) &= \Omega_0 a^{-3} / (H(a) / H_0)^2 \\ \gamma &= 0.55 + 0.05 (1 + w(z=1)) w(z=1) \geq 1 \\ \gamma &= 0.55 + 0.02 (1 + w(z=1)) w(z=1) < 1 \,. \\ \text{Linder 2005} \end{split}$$

$$w(a) = w_0 + w_a \left(1 - a\right)$$

 $w_a>0$ corresponds to positive evolution of w with redshift

$$H^{2} = H_{0}^{2} \left[\Omega_{M} a^{-3} \Omega_{\Lambda} a^{-3(1+w_{0}+w_{a})} e^{3w_{a}(a-1)} \right]$$

$$\delta(a) = a \exp\left(\int_0^a [\Omega(a)^\gamma - 1] d \ln a\right)$$

For some combinations (w_0, w_a) the slower growth factor make it impossible to grow large galaxies at the observed redshift

To be CONSERVATIVE we consider the maximum M*/M ratio at the considered redshift

$$\frac{M_*}{M} \le \frac{\Omega_b}{\Omega} F$$

If all baryons are in stars

LCDM simulations suggest when the most massive halos are considered

Best fit value

F< 0.5

F=1

The largest the measured stellar masses The stronger are the constraints

If M* are obtained from SED fitting assuming Kennicut IMF constitutes the most conservative approach Robust with respect to

- -star formation process
- -values of H_0
- Baryon physics

For each combination (w₀, w_a)

- compute the maximum abundance of galaxies with observed M* at z=6 and z=7.

- compute the probability of observing such an abundance (perturbing observed LF through a Monte Carlo simulation including statistical and systematic errors)

Derive exclusion probabilities of different cosmological model from CANDELS data

We first consider two CANDELS field as in Grazian et al. 2014

Stellar masses derived from SED fitting

```
For each galaxy we run a Monte Carlo simulation. For each object we consider the effect of

- Changing the adopted star formation law

• exponential SFH \propto \exp(-t/\tau)

• inverted expon. SFH \propto \exp(+t/\tau)

• delayed SFH \propto (t^2/\tau)\exp(+t/\tau)

- Photometric redshifts

- Cosmic variance

- Extinction (0 < E(B - V) < 1.1) and extinction curves (Calzetti, SMC, LMC)

- Metallicity Z = 0.02 Z<sub>o</sub> to Z = 2.5 Z<sub>o</sub>
```

To be conservative, we adopt a Kennicut IMF (other considered IMF yield larger stellar masses)

For each stellar mass bin, we derive the different $\Phi(M^*,z=6)$ obtained when the above quantities are a allowed to vary

 \rightarrow For each M* we derive the whole distribution of measured Φ associated random and systematic uncertainties

Choose a cosmological model (w₀, w_a)

rescale the observed values of ${f \Phi}$ to the chosen cosmology

For each cosmological model, we compute the probability that the above uncertainties result in a measured $\Phi(M^*,z=6)$ exceeding the abundance of DM halos

Distribution of observed values Φ at a given M* in a given cosmology (W₀,W_a) Computing the exclusion probability for each (w₀,w_a) combination

> Probability that measured Φ exceeds the maximum abundance of halos in the considered cosmology (i.e. it excludes the considered combination w_0, w_a) when all uncertainties are considered

> > Φ

Maximum abundance of halos corresponding to M*

2

 $2-\sigma$ exclusion

Using LF from Grazian et al. 2015 (two CANDELS fields)

2

Simulating the statistical effect of doubling the number of galaxies used to derive the LF

a N^e

II. The Number density of sub galaxies at z=4.5-5.5

Galaxies identified in rest-frame optical and UV are known to under-represent the most massive galaxies,

Massive, star-forming, dusty galaxies are however detectable at sub-millimetre wavelengths

ALMA observations at sub-millimetre (870 μ m) wavelengths by Wang et al. (2019) lead to the discovery of 39 galaxies star-forming objects at z > 3, which are unseen in even the deepest near-infrared (H- band) imaging with the Hubble Space Telescope (H-dropouts),

These are massive galaxies with median stellar mass extending up to $M_* \approx 3 \cdot 10^{11} M_{\odot}$, with median mass $M_* \approx 4 \cdot 10^{10} M_{\odot}$.

In this case, an estimate of the corresponding DM halo mass can be derived from the clustering

- Correlation length r₀ (Limber equation)
- Galaxy bias b
- Variance of the DM field
- → DM mass M>10¹³ M⊙

III. Rareness of SPT031158 at z = 6.9

The most massive system detected at $z \ge 6$ identified in the 2500 deg² South Pole Telescope (SPT) survey (Marrone et al. 2018).

SFR \approx 2900 M $_{\odot}$ /yr, an estimated magnification μ = 2

Huge mass content $M_{H_2} \approx 3.1 \cdot 10^{11} M_{\odot}$.

Assuming $f_{H_2=} M_{H_2/}(M_*+M_{H_2})= 0.4 - 0.8$. Even assuming $M=M_b/fb$

DM mass M = 2 - 6 \cdot 10¹² M $_{\odot}$

we compute the Poisson probability of finding such a massive object within the volume probed by the SPT survey,

For the different DDE models (w0, wa).

 Compute N(M, z) number of systems with mass M and higher at redshift z and higher expected in the sky area fsky = 2500 deg² covered by the SPT survey

• Compute such a number for the obs. values (i.e., z=6.9, and $M=2-6\cdot10^{12}M_{\odot}$) obtaining N_{obj}

 Compute Nrare defined as N(M, z) only for the masses M and redshifts z for which N(M, z) ≥ N_{obj}

Method by Harrison & Hotchkiss 2013

The Poisson probability of observing at least one system with both greater mass and redshift than the one which has been observed is

 $R_{M,>Z} = 1 - exp(-Nrare)$

Combining the above probes under the most conservative assumptions

Competitive with existing probes

A major fraction of the region favoured by AGN is ruled out

Results consistent with cosmological constant

Exclude models with $w_a \ge -3/4 - (w_0 + 3/2)$

Almost entirely rule out the quintessence models where initially w > -1 and wdecreases as the scalar rolls down the potential (cooling models), which occupy most of the region $w_0 > -1$, $w_a > 0$ (see Barger, Guarnaccia, Marfatia 2005).

These typically arise in models of dynamical supersymmtery breaking (Binetruy 1999; Masiero, Pietroni, Rosati 2000) and supergravity (Brax and Martin 1999; Copeland, Nunes, Rosati 2000) including the freezing models in Caldwell & Linder (2005) in which the potential has a minimum at $\varphi = \infty$.

For phantom models with $w_0 < -1$ (see Caldwell 2002), our constraint $w_a \ge -3/4-(w_0+3/2)$ excludes a major portion of the parameter space corresponding to models for which the equation of state crossed the phantom divide line w = -1 from a higher value.

Positive evolution of w disfavoured

CONCLUSIONS

Our results exclude DDE with an equation of state rapidly evolving with z dw/da

Competitive and complementary with existing probes

This limit has an impact on a wide class of models with a 'freezing' behaviour ($\phi^{"}$ <0) of the DE scalar field (see Caldwell & Linder 2005; Linder 2006).

 ϕ = -V, ϕ - 3 H ϕ

Two regimes:

```
'thawing' solutions with \phi'' > 0 and
```

'freezing' solutions with ϕ '' < 0

The two regimes are separated by $dwa/da = 3(1 - w^2)/a$ (Linder 2006)

Supergravity (SUGRA) inspired models (Brax & Martin 1999) - well fitted by w0 \approx -0.82 and wa \approx 0.58 (Linder 2003) - are strongly disfavoured

