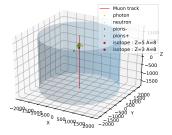
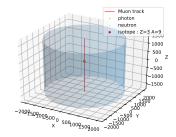
Spallation backgrounds

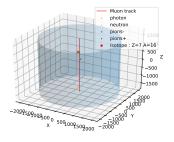
Laura Bernard

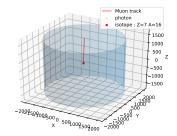
- \longrightarrow Number of generated muons at entrance of detector : 10^9
- \longrightarrow Number of SK-background isotopes needed : 10^6

MUSIC


Generates μ at surface and propagates them to SK underground (θ, ϕ)


FLUKA


Propagates muons and secondaries in water (hadronic showers only) 10^4 isotopes simulated


SK DETector SIMulation Simulation of μ , shower, n-capture

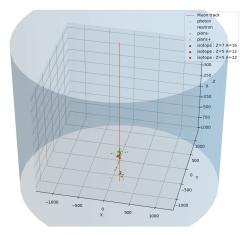

Shower visualization from FLUKA

Figure 1: Shower visualization from FLUKA

Laura Bernard, January 31, 2020

 $\circ \rightarrow$ proportion of stopping μ creating isotope non negligeable : tension with data

Caracterization :

- Muon energy E_{μ}
- # secondaries = f(E_{μ})
- $\circ~\#$ neutron captures
- Distance of istopes to track
- etc ...

From FLUKA to SKdetSim

- \longrightarrow What do we want to simulate ?
 - (t = 0) Minimum ionizing muon
 - $(t = \frac{c}{d})$ Generate the secondaries from hadronic shower (EM handled by Geant)
 - $(t = t_{n-capt})$ Generate 2.2 MeV γ from n-H capture
 - $\circ~(t=t_{decay})$ Generate γ/n from isotope decay

- \longrightarrow Few modifications to SKdetSim :
 - Turn off muon nuclear interactions
 - Turn off generation of particles created

- \longrightarrow Work in progress ...
 - Output of FLUKA has been converted into zbs input files for SKdetSim
 X Seg faulting when muon energy > 200 GeV