Development of crystalline silicon suspension structures

Ursula Gibson
NTNU

John Ballato, Wade Hawkins
Clemson University
Materials aspects - crystal suspension

Needed:
 single crystal
 few impurities
 smooth surface
 few defects
 low stress

As-drawn:
 polycrystalline
 thermally induced stress
 smooth core surface

Improvements possible via:
 interface coatings
 laser annealing/tapering
 addition (then removal) of other elements
Fiber drawing technique

- Wide range of core diameter
 - 10 - 300 micron (so far)
 - (fiber - cane)

- Glass as processing vessel for recrystallization

Source: Cover Image of Draic and Ballato article in the Journal of the American Ceramic Society.

CO$_2$ laser treatment

- Recrystallization
- Thermal stress/strain relief
- In situ observation of solidification process

Crystal structure

XRD

(Not θ-2θ)
rotation of fiber allows determination of crystallite #, orientation

As drawn

Laser annealed

Lonsethagen, K. http://hdl.handle.net/11250/2615575
Interface coatings

Early Si draws - cladding damaged, oxygen inclusion

Interface layer
compliant -- reduced stress
blocks oxygen transport
X-ray Diffraction DA30518 Si fiber

recent results -coating can limit nucleation
(and possibly affect orientation)
Addition of element - alloy SiGe

Addition of Ge lowers m.p.

Translation of melt zone allows regrowth of single crystal

Reduced temperature, alloy

Travasso, et al.
DOI: 10.5281/zenodo.3820523
Addition - GaSb/Si eutectic

CO₂ laser draws low mp material to center of beam

Lower temperature melt translating through core leads to crystallization further from the nucleation temperature

Low solid solubility → pure silicon left behind
Addition- Au/Si eutectic

XRD/TEM shows bicrystal; IR & THz transmission \rightarrow high quality material

Challenge: Au introduced during draw - how to remove excess?
Possible future directions

Longer single crystals -
• eutectic management

Larger cores - stress management
• interface coating
• glass composition
• rectangular cross-section?

Crystal orientation
• seeds for regrowth

Isotopically pure Si?
potential 1.5x improvement in thermal cond.
Summary

• Why glass-clad semiconductor fiber?
 – High quality surfaces
 – Terminal cones can be fabricated as part of the draw
 – Purification, crystallization processes developed
 – Doping possible if desired

• Fabrication of semiconductor fibers
 – Fiber drawing technique
 – CO2 laser treatment

• Status
 – Progress in formation of single crystals of ‘large’ dimensions
Thank you