Transient Astronomy in the EU
Projects for MMA with GW:
Encoding Sky Maps

Giuseppe Greco
INFN-sezione Perugia
Contents

EU Projects and MMA with GW

Practical Tools Developed using Spatial MOC

New Tools using Spatial and Temporal MOC

Feasibility study for MMA with ET
Some years in developing and testing in EGO-Virgo EU Projects

Strategies and implementations to connect the European Strategy Forum on Research Infrastructures (ESFRI) projects to the European Open Science Cloud (EOSC) through the Virtual Observatory (VO).
Each MOC cell is defined by two numbers: the hierarchy level (HEALPix order) and the pixel index (HEALPix ipix).

The NUNIQ scheme defines an algorithm for packing an (order, ipix) pair into a single integer for compactness.
Why MOC? Presentations and Discussions

Multi Order Coverage Map

- The MOC data structure is based on the HEALPix (Hierarchical Equal Area isoLatitude Pixelation) tessellation (Gorski et al. 2005) to map irregular and complex sky regions into hierarchically grouped predefined cells.
- The operations between the MOC maps (union, intersection, subtraction, difference) are very fast even for very complex regions.
- Some dataserver, such as VizieR, can be queried by MOC in order to return data (galaxy catalogs/list of images) only inside the MOC coverage.
Overall impact of MOC approach

Sky Map Visualizations and Credible Regions in Aladin

In this section, we demonstrate working with gravitational-wave sky localizations in Aladin Desktop. The following main topics are addressed.

Lessons from counterpart searches in LIGO and Virgo’s third observing campaign from Michael W. Coughlin.
- MOC and GW Sky Localizations
- Running Aladin Desktop
- Loading a GW Sky Localization
- Building a Credible Region
- Area Within a Credible Region
- Querying and Filtering a Galaxy Catalog
- Thumbnail View Generator

https://emfollow.docs.ligo.org/userguide/resources/aladin.html
High degree of Interoperability

Download and run the tutorial from https://l.infn.it/2v
GWsky: Interactive Tiling based on SAMP
Spatial and Temporal MOC: ST-MOC

At a given Time range we obtain the corresponding Spatial coverage.
GW credible regions in Space and in Time

In **PlaneID** a credible region is selected.

In **Time** the merger time is added.

To search for any electromagnetic emissions before or after the compact binary coalescence, the time values can be modified accordingly producing a new ST–MOC.

Generation of a ST–MOC from a gravitational-wave sky localization using Aladin Desktop (beta version).
ST-MOC application: EM-followUP

Schematic kilonova light-curve

Associated coverage in each time range such as selected above
Search for Spatial and Temporal Coincidence Between LAT/Fermi Exposure Maps and GW Sky Localizations

The poster describes a practical method to search for spatial and temporal coincidence of the LAT/Fermi coverage over a gravitational-wave sky localization. The method returns the overlap region between the two sky areas within a proper time window selected by the user. This approach offers a prompt setting of the observational strategies for searching potential electromagnetic candidates as well as a fast cross-matching between the LAT and the LIGO, Virgo and KAGRA databases for dedicated post-processing analysis. The tasks are performed using the encoded standard method named Multi Order Coverage Map and visualized in the Aladin Desktop.

Theme - Multi-Messenger Astronomy
Is TS-MOC eligible for MMA with ET?

1. Long-term support
2. IVOA Document and Standard
3. Interoperable data structure
4. Generate ST-MOC from VizieR and VO providers
5. Aladin Tree by Space & Time
6. Possible Extension - distance?

IVOA Northern Fall Interop - MOC 2.0 Status and Discussion; P. Fernique et al. 2020
ET Expected Detection Rate

ET will explore the universe with gravitational waves up to cosmological distances with an expected detection rate of order $10^5 - 10^6$ black holes and 7×10^4 neutron stars mergers per year (Maggiore et al., 2020).

How TS-MOC can be used to organize the HUGE ET data release?
Fast and real time data access could be provided by encoding the ET sky localizations into ST–MOC and query them from a specific time range. Transients can be ranked based on the position inside the credible regions.

Electromagnetic/neutrino surveys will explore in real time the ET sky localizations through multiple spatial and temporal intersections to probe any electromagnetic/neutrino signals temporally and spatially connected to the inspiral, merger or ring-down phases.
Independent Transient Classification

ITC-1 - *for well localized transients*

Candidate Transient at t_1

$P_1 (RA; DEC) @ t1$

- Localize the transient inside the ET sky maps
- Query ET skymap database around t_1
- Show ET localizations over the sky

- **OUTSIDE**
- **INSIDE**
- **Alert**
- **Follow-up the transient and localize it when the sky map is improved**
- **New Alert**
Independent Transient Classification

ITC-2 - for transients localized in an error box

Candidate Transient at t_1

Convert error box (any shape) in TS-MOC

Visualize the error box sky localization

Query ET skymap database around t_1

Show ET sky maps overlapped the error box region

Measure Space&Time Intersection

NO Intersection

Follow-up with multiple intersections

New Alert

Intersection

Alert
Conclusions

Feasibility studies are ongoing

- Focusing on the last IVOA standard proposal TS-MOC.
- Real time transient classification (ITC-1/ITC-2).
- Plan interoperability with the existing facilities in the ET era.
- Simulations with theoretical predictions (detection rate and sky map size).
- New EU proposals in supporting technical approaches for ET MMA.

Please, join the study (if you are interested) writing at giuseppe.greco@pg.infn.it; marica.branchesi@gssi.it
Thanks