
Cosmology with ET

Evans and Hall 2019 Figure in Astro2020 Science White Paper "Cosmology and the Early Universe" ET will detect:

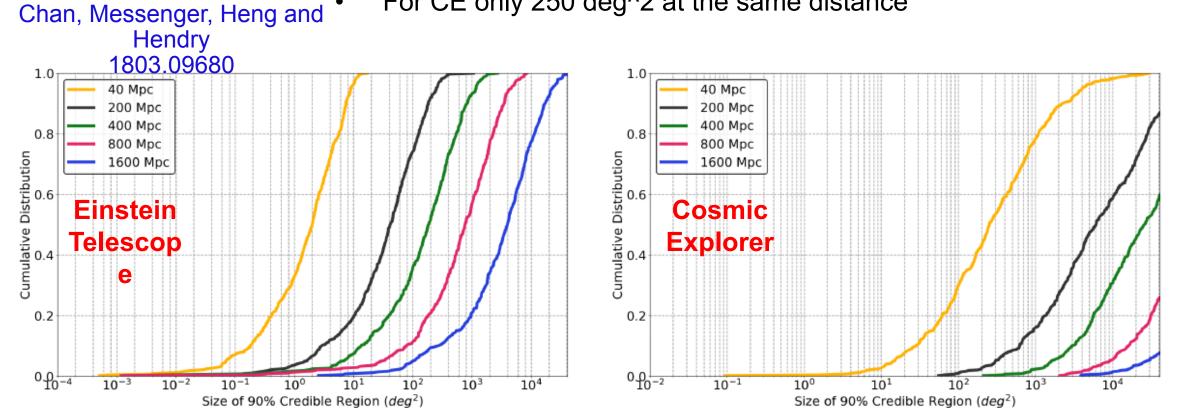
- NS-BH and BH-BH up to 8
- BNS up to ~ 2 $\mathcal{O}(10^5)$ events/

Cosmology needs redshift information

Redshift determination from EM counterpart

1) Temporal coincidence with GRB

2) For well localized events, follow-up with optical and IR telescopes and identify host galaxy


- 3G network, e.g. ET+CE+CE
- Some localization with ET alone using Earth rotation

Localization at single 3G detectors

- For BNS and a low-frequency cut-off of 1Hz, the signal stays 5 days in the detector bandwidth
 - Earth rotation \implies time dependence in the antenna pattern function

 The time-dependent response helps localizing the source even with a single detector! The success of the method depends on the sensitivity at low frequencies (works for ET, but not for CE)

 In this way ET can localize 50% of BNS at 40 Mpc to within 2 deg²
 Chan Measurer Hend and
 For CE only 250 deg² at the same distance

Tables from Astro2020 Science White Paper "Multimessenger Universe with GWs from binaries"

Table 1: Expected detections per year (*N*), number detected with a resolution of < 1, < 10 and < 100sq. deg. (N_1 , N_{10} and N_{100} , respectively) and median localization error (*M* in sq. deg.), in a network consisting of LIGO-Hanford, LIGO-Livingston and Virgo (HLV), HLV plus KAGRA and LIGO-India (HLVKI) and 1 Einstein Telescope and 2 Cosmic Explorer detectors (1ET+2CE).

Network	N	N_1	<i>N</i> ₁₀	N ₁₀₀	М
HLV	48	0	16	48	19
HLVKI	48	0	48	48	7
1ET+2CE	990k	14k	410k	970k	12

Table 2: Present (*P*) and future (*F*) electromagnetic facilities that are able to observe faint/distant counterparts to GWs. Detection Limit (**DL**, 1 hr exposure time) for UV, optical, and near-IR facilities are expressed in AB magnitudes, for X-rays in 10^{-16} erg s⁻¹ cm², and for radio in μ Jy. Distance reach (**D** in Mpc) of facilities for GW170817-like events are shown.

	Facility	DL	D			Keck/VLT P	23	-
					Optical	Gemini Obs. P GMT F	23 25	5 12
Gamma-rays	Fermi P	S/N 5	80		Spec.	TMT F	25.5	15
	AMEGO F	S/N 5	130	0		E-ELT F	26	20
	Swift P	S/N 5	~ 80	-	Infrared	WFIRST F	27.5	48
V	Chandra P	30	150	Imaging	Euclid F	25.2	17	
X-rays	ATHENA F	3	480		Keck/VLT	21.5	4	
	Lynx F	6 S/N 5	450		Infrared	GMT F	23.5	7
	STROBE-X F		120	Spec.		TMT F	24	9
UV	HST (im) P	26 23	2000 400	-		E-ELT F	24.5	12
Ontical	HST (spec) P Subaru P	23	3200			VLA (S) P	5	
Optical Imaging	LSST F	27	3200	Radio	ATCA (CX) P	42		
	LooIr	21	5200		Raulo	ngVLA (S) F	1.5	3
						SKA-mid (L) F	0.72	6

Follow-up for well localized sources, e.g. WFIRST, up to $\simeq 0.76$ Subaru and LSST, up to $\simeq 0.55$

other telescopes, up to $z \sim 0.1 - 0.3$

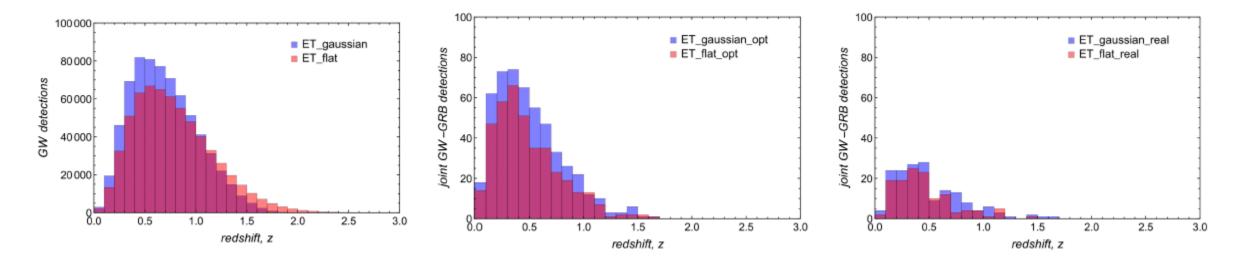
Large uncertainties in time and costs

For LSST a realistic estimate is 1% of time for GW O(10) counterparts per year at $z \sim 0.5$ O(100) counterparts per year $z \sim 0.1$

Joint GW/GRB detections at ET/THESEUS

EB, Dirian, Foffa, Howell, Maggiore, Regimbau, JCAP 1908 (2019) 015

Simulation of a population of BNS based on Regimbau et al. 2015, ApJ 799,


• Evaluation of the coalescence rate using star formation rate and a probability distribution for the delay between formation and coalescence of the binary system (modeled according to Dominik et al. 2012, ApJ 7 (Expan) ential probability distribution for the time interval between two successive events (i.e. assume coalescence in the observer frame is a Poisson process)

- 2 possibilities for the neutron stars mass distribution are considered: flat or gaussian
- Compute the SNR for each event to assess its GW detectability

EM counterpart

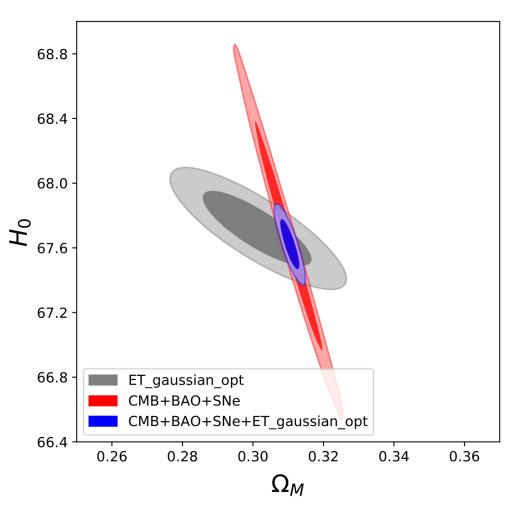
- Redshift is determined from temporal coincidence with GRB, assumed to be detected by the proposed THESE definition of the strain of the stra
- Only the events with a peak flux of GRB emission above the THESEUS flux limit are kept in the final catalog
- We consider 2 different possibilities for the THESEUS FoV: 6 sr (optimistic) and 2 sr (more realistic)

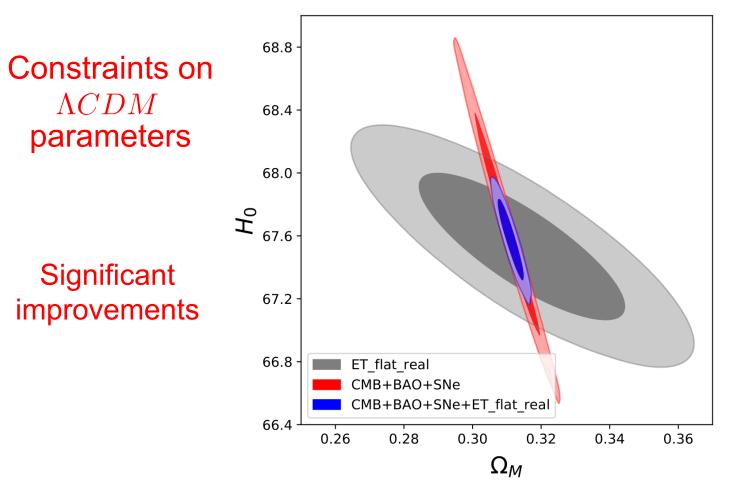
EB, Dirian, Foffa, Howell, Maggiore, Regimbau, JCAP 1908 (2019) 015

CAVEAT:

Estimates here are too optimistic acording to more recent forecasts, see talk by Marica Branchesi

> Total number of events at ET with SNR>12 (10 years of data and 80% duty cycle)

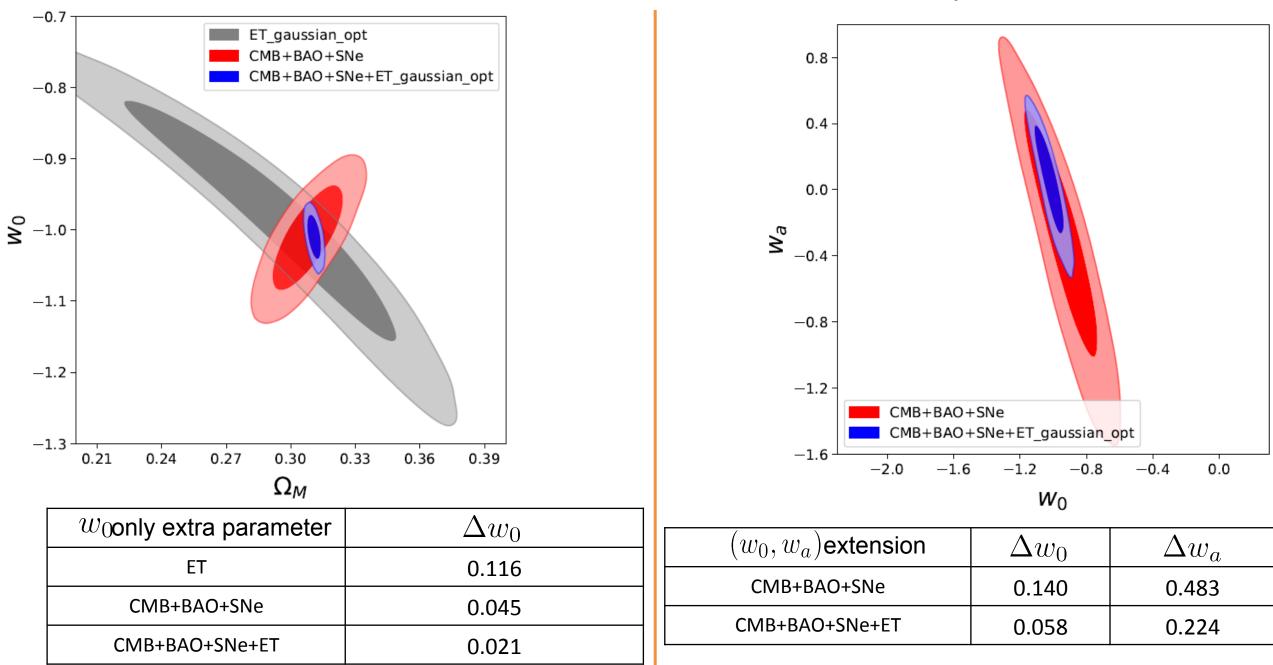

FLAT	GAUSSIAN
6.2×10^{5}	6.9 ×10 ⁵


Number of events at ET with EM counterpart at THESEUS (10 years of data and 80% duty cycle

FLAT	GAUSSIAN	FLAT	GAUSSIAN
OPT	OPT	REAL	REAL
389	511	128	169

	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$
ET_gaussian_opt	0.23 %	3.38 %
CMB+BAO+SNe	0.72 %	2.11 %
CMB+BAO+SNe+ET_gaussian_opt	0.15 %	0.57 %

	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$
ET_flat_real	0.42 %	6.17 %
CMB+BAO+SNe	0.72 %	2.11 %
CMB+BAO+SNe+ET_flat_real	0.26 %	0.82 %



using only w_0

Dark Energy EoS

 (w_0, w_a) parametrization

ET+CE+CE/THESEUS

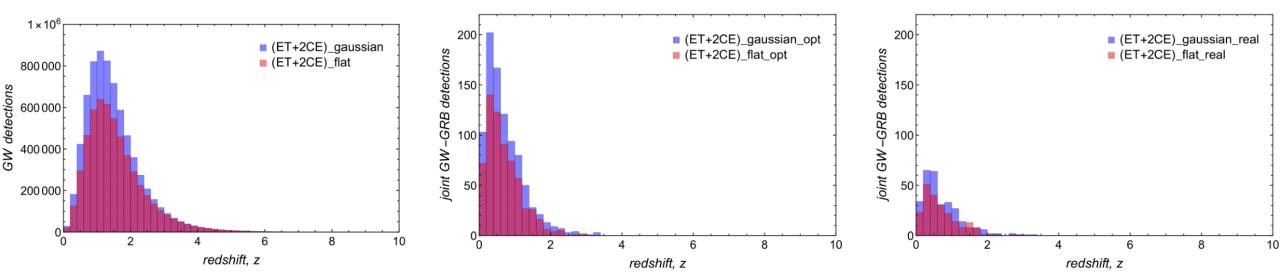
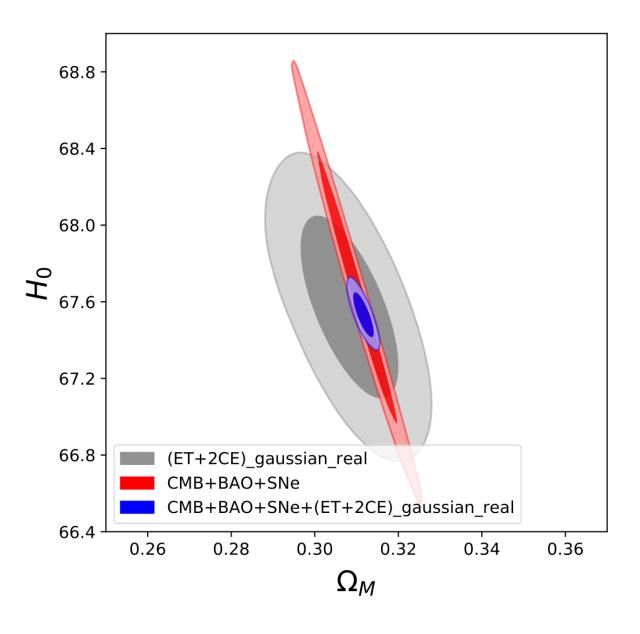
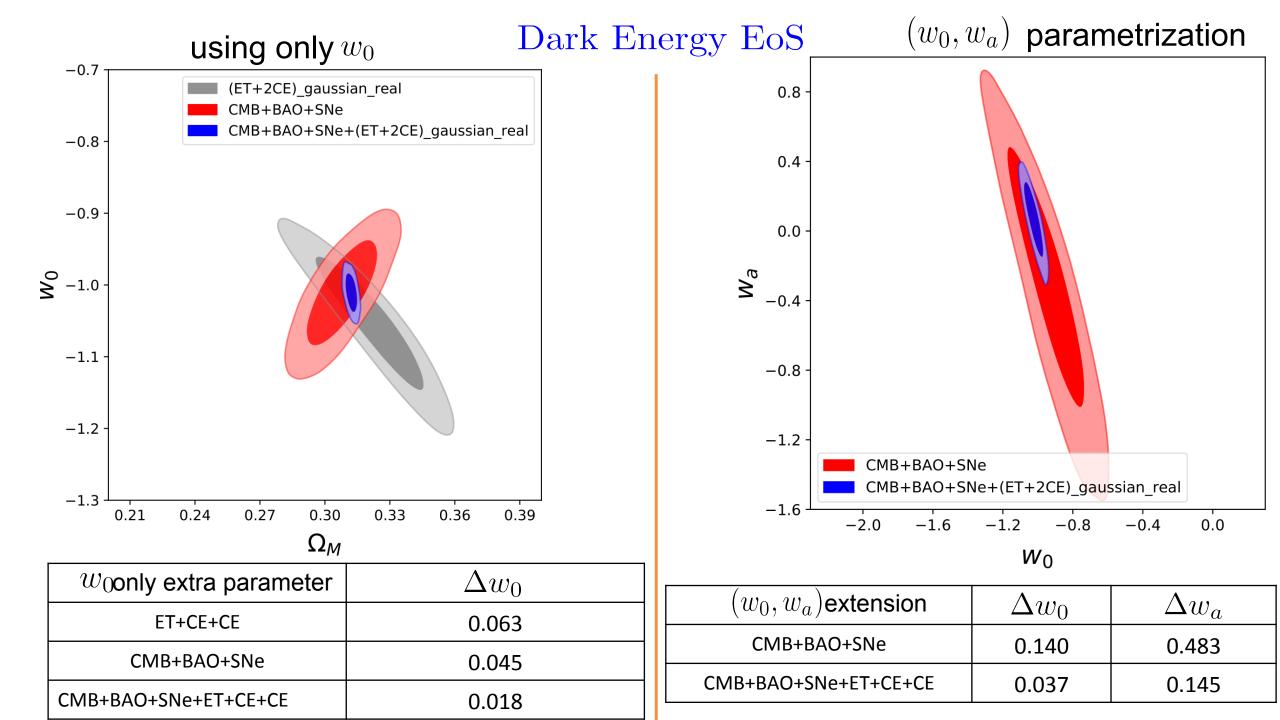



Figure from Belgacem, Dirian, Foffa, Howell, Maggiore, Regimbau 1907.01487

• 10 yrs of events, 80% duty cycle for each GW detector

	GW events	Joint GW-GRB events
ET+CE+CE 10 years	7 millions $z_{ m max}\simeq 9.6$	optimistic 900, more realistic 300 $z_{ m max}\simeq 3.4$



$\Lambda \mathrm{CDM}$	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$
ET+CE+CE	0.23 %	2.09 %
CMB+BAO+SNe	0.72 %	2.11 %
CMB+BAO+SNe+ET+CE+CE	0.11 %	0.52 %

Significant improvements wrt current cosmological data

Even considered on their own, GW data at ET+CE+CE willbconstrain better than current CMB+BAO+SNe

important role for the Hubble tension

Other cosmological observables testable with ET?

Yes, in the next slides!

GW propagation

Let us first recall how it works in GR

- Tensor perturbations around FRW background, with Fourier $~~h_{A}\left(\eta,\mathbf{k}\right)$ modes

Free propagation:
$$h''_A + 2\mathcal{H}h'_A + k^2h_A = 0$$
 $\mathcal{H} \equiv \frac{a'(\eta)}{a(\eta)}$

• Write
$$h_A(\eta, \mathbf{k}) = \frac{\chi_A(\eta, \mathbf{k})}{a(\eta)}$$
 to obtain $\chi''_A + \left(k^2 - \frac{a''}{a}\right)\chi_A = 0$

- For modes inside the horizon, it gives a wave equation $\chi_{A}\left(\eta,\mathbf{k}\right)$ for

$$\chi_A'' + k^2 \chi_A = 0$$

• speed of GWs = speed of
$$c_{gw} = c$$

GW propagation in modified gravity

- Tensor perturbations around FRW background, with Fourier $~~h_{A}\left(\eta,\mathbf{k}\right)$ modes

$$h_A'' + 2\mathcal{H}\left[1 - \delta\left(\eta\right)\right]h_A' + k^2h_A = 0$$

EB, Dirian, Foffa, Maggiore PRD 2018, 1712.08108 PRD 2018, 1805.08731

- It is a very general feature of modified gravity models, e.g.
 - Scalar-tensor theories: Horndeski (f(R), galileons, Brans-Dicke), DHOST
 - Nonlocal gravity
 - Higher dimensions: DGP
 - Bigravity

Deffayet and Menou 2007
Saltas et al. 2014,
Lombriser and Taylor 2016,
Nishizawa 2017,
EB, Dirian, Foffa, Maggiore 2017, 2018
EB et al. (LISA Cosmology WG), 2019

• Write
$$h_A(\eta, \mathbf{k}) = \frac{\chi_A(\eta, \mathbf{k})}{\tilde{a}(\eta)}$$
 where $\frac{\tilde{a}'(\eta)}{\tilde{a}(\eta)} = \mathcal{H}\left[1 - \delta\left(\eta\right)\right]$
and obtain $\chi_A'' + \left(k^2 - \frac{\tilde{a}''}{\tilde{a}}\right)\chi_A = 0$

- For modes inside the horizon, it gives a wave equation $\chi_{A}\left(\eta,\mathbf{k}\right)$ for

$$\chi_A'' + k^2 \chi_A = 0$$

• No modification in the $k^2\chi$ term to comply with constraints on speed of GWs

GW170817/GRB 170817A $|c_{qw} - c|/c < \mathcal{O}(10^{-15})$

LIGO and Virgo collaborations, ApJ 848, L13 (2017)

Standard sirens (coalescing binaries)

• Amplitude decreases as the inverse of the (EM) luminosity distance

$$h_A(\eta, \mathbf{k}) \propto \frac{1}{d_L(z)}$$

• Direct measurement of the (EM) luminosity distance

 $\begin{array}{rcl} \delta\left(\eta\right)\neq 0 & \longrightarrow & \tilde{a}\left(\eta\right)\neq a\left(\eta\right) \\ \bullet & \text{Amplitude decreases as the inverse } & \text{of a } \\ & \text{new GW luminosity distance different} \\ & \text{from the EM one} \end{array}$

$$h_A\left(\eta,\mathbf{k}
ight) \propto rac{1}{d_L^{gw}(z)}$$

 $d_{L}^{gw}\left(z\right) = \frac{a(z)}{\tilde{a}(z)} d_{L}^{em}\left(z\right) = \exp\left[-\int_{0}^{z} \frac{dz'}{1+z'} \delta(z')\right] d_{L}^{em}\left(z\right)$

• Direct measurement of the GW luminosity distance

Standard sirens can be used to probe gravity on cosmological scales and to test modified gravity cosmology against CDM

ΛCDM

There is only one notion of luminosity distance, valid for both standard candles and standard sirens

$$d_L(z) = \frac{1+z}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda}}$$

Modified gravity cosmology

There are 2 effects: 1) The EM luminosity distance is different because of the different values of cosmological parameters and a non-trivial DE EoS $dem(z) = \frac{1+z}{z} \int^z \frac{dz'}{z}$

$$d_L^{em}(z) = \frac{1+z}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_M (1+z')^3 + \rho_{DE}(z')/\rho_0}}$$

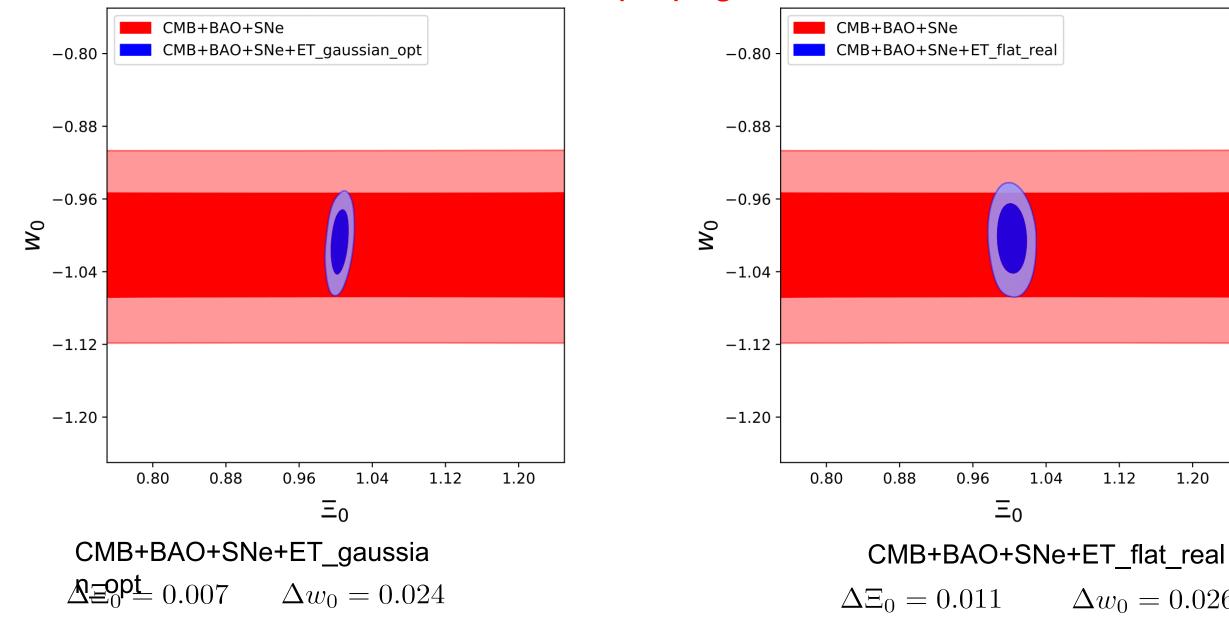
2) On top of that, modified GW propagation must be taken into account

$$d_L^{gw}(z) = \exp\left[-\int_0^z \frac{dz'}{1+z'} \delta(z')\right] d_L^{em}(z)$$

A parametrization for modified GW propagation

$$\frac{d_L^{gw}(z)}{d_L^{em}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1 + z)^n}$$

EB, Dirian, Foffa, Maggiore PRD 2018, 1805.08731


It fits a large class of modified gravity models EB et al. (LISA Cosmology WG), 2019

Resulting DE sector parametrization:

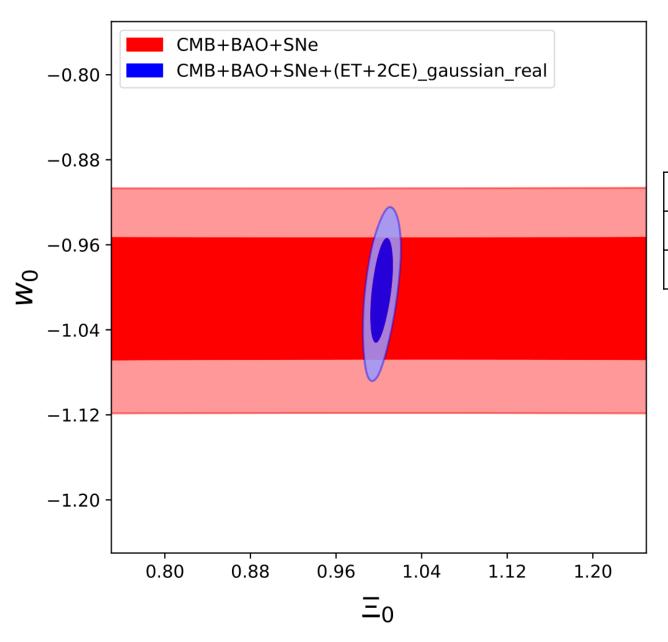
background (w_0, w_a) scalar perturbations (Σ, μ) tensor perturbations (Ξ_0, n)

 Ξ_0 and w_0 are the most relevant parameters for dark energy studies with standard sirens

Modified GW propagation at ET

EB, Dirian, Foffa, Howell, Maggiore, Regimbau, JCAP 1908 (2019) 015

1.04


Ξ0

1.12

 $\Delta w_0 = 0.026$

1.20

Modified GW propagation at ET+CE+CE

(w_0, Ξ_0) extension	Δw_0	$\Delta \Xi_0$
CMB+BAO+SNe	0.045	
CMB+BAO+SNe+ET+CE+CE	0.033	0.007

CONCLUSIONS

• 3G detectors can have an important impact on H₀ measurements and DE equation of state

• In modified gravity there is a GW luminosity distance

Modified GW propagation is important for DE studies using standard sirens:

1) It can only be probed by GW observations

2) Ξ_0 can be measured better than v_0

3) It allows to test many modified gravity models

Significant physical observable for 3G detectors