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The Optics division
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Core Optics - HF

ET-HF optics specifications/boundary conditions
- 3 MW circulating power @1064nm

- 12 cm beam radius (LG33/TEMO0)
- Room temperature

ET-HF substrates
- Fused silica, 200 kg (5 x Adv. LIGO/Virgo)
(2 X Virgo+)

ET-HF Coatings Manufme complete at Heraeus,

arriving end 2020 (now!)

- With typical considerations, require 4 X
reduction in coating loss compared to SiO, and
TiO,:Ta,O; in Adv. LIGO/Virgo (for 12 cm beam)

- 0.5 ppm absorption target due to thermal
compensation system (TCS).

Heraeus/Corning - 100s-kg scale SiO,

https://www.nikon.com/about/technology/stories/2003_synthetic_silica_glass/

CEC/Strathclyde/Glasgow/UWS
amorphous coatings for 620 mm / 200 kg

- 10-20 ppm scattering limit per mirror (needs
further review following 2G scatter challenges).
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Core Optics - LF

ET-LF optics specifications/boundary conditions
- 18 kW circulating power @1550nm

- 12 cm beam radius (TEMOO)

- 10K (see cryogenics for status)

Computational simulations of

ET-LF Substrates thermal noise and
radiative/conductive cooling
- Silicon’ 211 kg Masso Herrera, Thesis, Glasgow 2019:

. . . . http://dx.doi.org/10.5525/gla.thesis.41177
(sapphire may be considered - birefringence a challenge)

ET-LF coatings

- With typical considerations, require 3.8x reduction in
coating loss compared to the loss of SiO,/TiO,:Ta,O. at 10 K.

- <5 ppm absorption (ideally sub-ppm to minimise heat load
on test mass)

450 mm
diameter
Siingot
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Core Optics — HF/LF

Example progress - optical coatings
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Core Optics — HF/LF

Example progress - optical coatings (contd.)

Molecular Dynamics Mechanical Spectroscopy
(Puosi VIR-0854A-19 LIGO-G1901646

- apply stress and compute strain

- phase shift o« mech. Loss

Good agreement with Ta,Oc loss

strain

stress (GPa)

ET-LF proposed solution:

PHYSICAL REVIEW LETTERS
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noise reduced by a facter of 25 compared to Advanced LIGO. We present investigations of HFO,
doped with 5i0, as a new coating material for future detectors. Our measurements shaw an
extinction coefficient of k = 6 = 10~* and a mechanical loss of ¢ = 3.8 = 10-* at 10K, whichisa
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Core Optics - LF

Example progress - optical coatings (contd.)

Other materials/technologies e.g. SiN,
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Laser sources

’ * Combiner
+ MFA (27.5 °C

Requirements:

e ET-HF: High power (700W)
 Beam quality (TEMOO)

* Low beam pointing noise

A\ (~AdV+/10)

* Low intensity noise ,
* Low phase noise

* High reliability A
e ET-LF: low power (5W) but very Iow n0|se at LF — beam jitter, scattered light

Present technology:

- Fiber amplifier: AdV+ ~100W

= Improve and combine coherently several sources ?
- Pre-mode cleaner (mode filtering + beam pointing)
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Input optics

Input

Mode
Cleaner
Interface between laser source and ITF, provides:
 Pure TEMOO beam

* Very stable in frequency, power and pointing
SIB1

* Phase modulation for longitudinal and angular controls
Faraday
Isolator

_ITF

%

Components:
- EOMs
Faraday isolators (high vacuum compatible) |

Laser

A\ Thermal effects (ET_HF)

- Technology to be developed at ET-LF wavelength

Mode cleaner cavities Radiation pressure and thermal effects
(beam filtering & frequency stabilisation)

Mode matching telescopes (tunable)
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Output optics

Readout of the dark fringe beam and auxiliary beams for controls lITF
* Mode filtering of the dark fringe
* Squeezinginjecton &
* Photodetection of the beams
Output |
Mode Cleaner N

Photodiode @
Components:

 Mode matching telescopes (tunable)
* Faraday isolator (low optical loss)

*  Output mode cleaners (low optical loss) A\ Thermal effects and cavity noise

— Presently 2 types of cavities: monolithic / tombstone

 Photodiodes (high QE, very low noise electronics)
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Squeezed light

Provides the squeezed light at the required angle

S

* Squeezed light source  Fitering caviy
e Faraday isolators (high isolation) :

* Filter cavities (low phase noise)
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Wavefront sensing and control

Reduction of optical losses due to beam mismatch

Sense the core optics deformation (global thermal effects, point
absorbers)

Correct those deformations
Ease ITF controls during transients

Components:

Wavefront sensors Wavefront map
Ring heaters, Co2 lasers (low noise)
Mode matching optics DM 12x12

&

Heating profile
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Scattered light mitigation

Prevent parasitic noise from scattered light into ITF beam:
- Modeling of scattered light coupling to ITF beam

- Reduction of parasitic light scattered by all optical
elements

Components:
- Simulation software

- Guidelines for the design of optical benches
- Monitoring systems (ex: instrumented baffle in AdV+)

- Reduction of scattered light (high quality baffles and
beam dumps, ...)

- Reduction of mechanical motion of scattering elements|(
high quality mechanical mounts)
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Conclusions

Many challenges ahead of us ...

* Improve the present technology at 1064nm for ET-HF
— High power
— Reduce and control thermal effects
— Minimise optical and mechanical losses (core substrates, coatings, all optics)
— Lower the noises (scattered light, photodetectors,...)

 Develop the technology at 1550nm for ET-LF
— Squeezed light, Faraday isolators,...
— Low noise at low frequency (scattered light, beam jitter,...)
— Minimise optical and mechanical losses (core substrates, coatings, all optics)

... do not hesitate to join the effort !

Related R&D talks in tomorrow’s session:
- Higher-order Hermite-Gauss modes for gravitational waves detection by Walid Chaibi
- R&D on coatings by Jessica Steinleichner
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