### **Presentation of the interferometer division**

J. Degallaix and S. Hild



ET-0080A-20

11<sup>th</sup> ET symposium – December 2020

### who/what is in this division?

- 2 co-chairs : J. Degallaix and S. Hild
- 6 work packages :
  - Observatory design and noise budget
  - Optical layout, sensing and control scheme LF
  - Optical layout, sensing and control scheme HF
  - Data acquisition and real time control
  - Noise characterisation
  - Calibration

For each WP, one chair and one deputy

### **Observatory design and noise budget**

- Scope :
  - development and updating of theoretical noise budgets
  - acting as interface to the science case
  - optimisation (T, filtering cavities, frequency cross over)
  - prepare scenarii for trade-off

Work already started with a development of a new version of PyGwinc (ET-0067B-20).

# Reminder of the sensitivity goal

#### LALA(V/D/D/D/A/V/D/D/D/D/A/V/V/D/DLA

#### **Comparison with 2G detectors**



### The geometry of the detectors

LALA(V/D/D/D/A/V/D/D/D/D/A/V/V/D/DLA

- 3 detectors arranged in triangle.
- each detector is 2 interferometers



### **Observatory design and noise budget**

#### The combined sensitivity curves:



Curves reproduced with PyGwinc

# Noise budget low frequency



# Noise budget high frequency



### **Optical layout, sensing and control scheme LF/HF**

- Scope :
  - development of optical layout of core interferometers
  - main large optics specifications
  - define locking scheme
  - define LSC<sup>1</sup> and ASC<sup>2</sup> strategies

Similar works for the 2 WPs with a lot of common tools/procedures. However important differences also exists:

- LF: emphasis on low frequency
- HF: taking care of the very high power

<sup>1</sup> Length Sensing Control <sup>2</sup> Alignment Sensing Control

### **Optical layout, sensing and control scheme LF/HF**

#### Recent progress about the recycling cavities design:



#### More tomorrow afternoon and on arXiv

### Data acquisition and real time control

- Scope :
  - requirements for the control and data acquisition systems
  - choice of the timing distribution network
  - preliminary budget for the hardware cost





### Close interaction with the ET pathfinder (and Virgo upgrade ?)

### Data acquisition and real time control

- More specific questions to be answered:
  - hardware architecture choice (Virgo vs LIGO vs commercial)
  - estimation of data flux for DAQs, real time control
  - DAQs software management / data access
  - investigation digital vs analog demodulation
  - specifications for online software, automation, latency

Essential input from other WPs

### **Noise characterisation**

- New WP following the lessons learned from 1G and 2G
- A transverse package to ease the commissioning and all the future noise investigation
- Scope :
  - review the other WPs from the point of view of noise characterisation
  - derive a list of noise for the technical noise budget
  - proposed a strategy to project those noises
  - also essential for glitch investigation and vetoes

### **Noise characterisation**

#### 



STRAIN NoiseBudget; gps = 1265931789 (2020-02-16 23:42:51 UTC) 10<sup>-19</sup> Measured raw; BNS 49Mpc, BBH 5.6e+02Mpc O3 goal, BNS 85 Mpc, LIGO-P1200087 Sum; BNS 64Mpc, BBH 7.6e+02Mpc "flat noise" estimate 10<sup>-20</sup> ASC Calibration DAC Dark Demodulation 10<sup>-21</sup> 1/rt(Hz) iantum Va 10<sup>-22</sup> 10<sup>-23</sup>  $10^{-24}$  $10^{1}$  $10^{2}$  $10^{3}$ Frequency [Hz]

What you want...

### and what you got

Making sure we will know the level of all the pertinent noises

### Calibration

From the output of my detector to the dimensionless amplitude of the GW signals

- Scope :
  - calibration requirements (derived from science goals)
  - development of optimal recombination, null-stream
  - design the calibration strategy and relevant hardware
  - cost estimate

### Calibration

- Estimated accuracy requirement :
  - amplitude errors < 0.5%</p>
  - phase errors < 0.1 rad</p>
- 2 ways: photon calibrator







### (with a laser beam)

Implemented already in 2G detectors

(with rotating masses)

### Conclusion

DIALAKAKAKALANAJAJAJAJAJAJAJAJAJAJAJA

- Chance to design a new observatory
- A long road ahead... with extensive experiences from 2G
- Most urgent work: the tunnel configuration
- Everyone is welcomed to contribute, plenty of tasks within the different WPs

Would you like to participate?

Stefan.Hild@Maastrichtuniversity.nl j.degallaix@Ima.in2p3.fr