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The emission factor is usually simple and nice, can be obtained in alternative ways 
more efficiently. 
It contains rich information about the infrared divergence and analytic properties of the 
amplitudes and helps resolving conceptual issues with factorization violation. 

𝑀 𝑝! ; 𝑋 ∼ 𝑀 𝑝! × 𝐹 𝑋; 𝑝!

When one or more external particles are  unresolved, gauge theory amplitudes factorize  
into lower-point amplitudes multiplied by a universal emission factor. 

From an effective theory point of view, soft emission factor can be computed  from 
Wilson-line matrix element.  
We use this method to obtain  the two-loop emission factor  with a single soft 
gluon for generic multi-point scattering amplitudes. 

Soft factor: X contains a single soft gluon 





Color-ordered amplitudes can have poles when region momenta 𝑃!,# ≔ 𝑝! + 𝑝!$% + · · · + 𝑝# go 
on shell.  At leading power as  𝑃!,#& → 0, they factorize into product of lower-point amplitudes. 
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Factorization of scattering amplitudes on multi-particle poles
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Collinear Factorization  

𝐴1+%

Independent of 
non-collinear 
external legs 

𝜆! = 𝑧 𝜆2 ,
𝜆!$%= 1 − 𝑧 𝜆2

On the two-particle pole  𝑃!,!$%= 0,  two adjacent external momenta are collinear.     



× 𝑆𝑜𝑓𝑡'()) 𝑠±; 𝑎, 𝑏
D!→E

𝑆𝑜𝑓𝑡'()) 𝑠$; 𝑎, 𝑏 =
⟨𝑎 𝑏⟩

⟨𝑎 𝑞⟩⟨𝑞 𝑏⟩
depend on the momenta and 
helicities of the soft gluon and the 
momenta of the color-ordered 
neighbors a and b, 
independent of the helicities and 
particle types of the neighboring 
legs 

Soft Factorization 

𝑆𝑜𝑓𝑡'()) 𝑠+; 𝑎, 𝑏 = −
[𝑎 𝑏]

𝑎 𝑞 [𝑞 𝑏]

(Tree-level) soft emission factor is a sum of gauge invariant dipoles
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𝑧4 ~
𝑖 𝑞
𝑖 𝑗 , ∀ 𝑖 ≠ 𝑗

Soft-collinear Factorization 

color coherence :  when certain hard partons are 
collinear, the soft gluon cannot resolve the angle between 
them and sees the total color charge.  
The emission is dipole-like. 

𝑆𝑝+ 𝑧4 , 𝑞$, 𝑗$ → −𝑇#
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𝑆- (𝑞$, {𝑝!}) → − 𝑇#
⟨!#⟩

⟨!4 ⟩⟨4#⟩

q collinear to p_j ,  {p_i} generic

∑!6#(𝑇! − 𝑇#) = −2 𝑇#

Same limit applies to q being wide 
angle, {p_i} collinear 

Agees with the soft limit of splitting 
function 

𝑝#

q



At two loops, the dipole soft factor has been known for collision processes 
with two hard  colored external states ; as well as soft emission in the (planar) 
large Nc limit.  

Generalization to higher loop order 

𝑀!$% = 𝑆± 𝑞; { 𝑝"} 𝑀!

Evidence that dipole emission formula needs to be modified, for multi-parton scattering processes 

Collinear factorization violation with initial-state collinear splitting.
Catani, de Florian, Rodrigo  1112.4405 

Quadruple correlation in three loop soft anomalous dimension   
Almelid, Duhr, Gardi, 1507.00047

𝑀1 ≔ ∑! 𝑎!𝑀1
(!),      S± ≔ ∑! 𝑎!𝑆±

(!)

All-order factorization formula 





Effective theory : soft gluon emissions from Wilson lines 

𝑞; 𝑎; ± 𝑌%⋯𝑌! 0 = 𝑆,± 𝑞, 𝑛" 0 𝑌%⋯𝑌! 0

( e.g. HQET,  SCET )

𝑌#(𝑥) := P exp 𝑖g ∫9
: 𝑛# ⋅ 𝐴-𝑇- 𝑥 + 𝑠 𝑛# 𝑑𝑠

Represent classical sources traveling in direction 𝑛# ≔
<⃗#
<$
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Multiple soft-gluon emission factor from n-point scattering amplitude 

𝑆 𝑋^, 𝑛_ = = ⟨𝑋^| (𝑌 *𝑌a⋯𝑌b 0

In pure dimReg vanishes for lightlike Wilson lines 0 𝑌%⋯𝑌1 0



Light-like  semi-infinite Wilson lines, no need to introduce offshellness.   
IR divergence regulated by Dim-Reg. 

𝑥!# ≔
(−𝑠!#)

(−𝑠!4)(−𝑠4#)

Integrate along closed contour (cusp singularities  of light-like  Wilson loop)  
Offsheness ( matter-dependent cusp anomalous dimensions, soft anomalous 
dimensions)  

IR regularization for Wilson-line matrix elements  

Vanishing diagrams 



At one-loop, soft gluon can couple to two Wilson lines. 
Emission factor is dipole like.  

𝑉_d
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Uniform transcendental weight 
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Γ= 1 − 𝜖 Γ& 1 + 𝜖
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7
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One loop emission factor 

𝜆-.=1 both incoming/outgoing
𝜆-.=0, otherwise 
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Two-loop dipole

1309.4941

Master integrals 

I1 I2 I3 I4

𝐶& 𝜖 = 𝐶>& 𝐵% + 𝐶>𝑁? 𝐵& + 𝐶> 𝑁@ 𝐵=

𝐵%,&,=: linear combinations of 𝐼%,&,=

Vanish upon 
taking color 
trace 

𝑆!,#
(-) 𝑞 = 𝑉')

* -
𝑓!+,𝑇'+𝑇), 𝐶- 𝜖

⟨𝑖𝑗⟩
𝑖𝑞 ⟨𝑞𝑗 ⟩

Two hard external partons



must cancel with non-vanishing diagrams with three parton correlations

Two-loop tripole

A B

The contribution from non-planar dipole emission diagrams

C D



Definition of the integral family:  

Topo( 1,1,1,1,1,1,1,0,0,0,0 ) 

𝐷% = 𝑘%&, 𝐷& = 𝑘&&, 𝐷= = 𝑘% − 𝑝% &,
𝐷A= 𝑘% + 𝑘& − 𝑞 &, 𝐷B= 𝑘% ⋅ 𝑝%, 𝐷C= 𝑘& ⋅ 𝑝&, 𝐷D = (𝑘%+𝑘& −

𝑝4) ⋅ 𝑝=,
𝐷E = 𝑘%, . 𝑝& 𝐷F= 𝑘%. 𝑘&, 𝐷%9= 𝑘&. 𝑝%, 𝐷%% = 𝑘%. 𝑝=

8 Master integrals  

(−𝑠!#)
(−𝑠!4)(−𝑠4#)

≔ 1,
𝑠!G𝑠4#
𝑠!#𝑠4G

≔ 𝑢 ,
𝑠#G𝑠!4
𝑠!#𝑠4G

≔ 𝑣 .

Differential equation contains singularities at 𝑢 = 0, 𝑣 = 0, Δ ∶= 1 − 2 𝑢 − 2 𝑣 + 𝑢 − 𝑣 & = 0

𝑑 𝑓 = 𝑑 𝐴 𝑢, 𝑣 𝑓

External kinematics



arg 𝑧

𝑝#H

𝑞H

𝑝G

0 1

𝑝#

𝑝!
𝑞

|𝑧G
!#|

𝑧G
!# ≔

𝑖𝑞 𝑘𝑗
𝑖𝑗 𝑘𝑞 , ̅𝑧G

!# ≔
𝑖𝑞 [𝑘𝑗]
𝑖𝑗 [𝑘𝑞]

In Euclidean region (i.e.  
(+?%#)

(+?%")(+?"#)
>0 ), the integrals are 

real and analytic.  

Only contains logarithms in 𝑧 ̅𝑧, (1 − 𝑧)(1 − ̅𝑧),  no l𝑛(𝑧 − ̅𝑧)

𝑢 = (1 − 𝑧G
!#) 1 − ̅𝑧G

!# , 𝑣 = 𝑧G
!# ̅𝑧G

!# .

𝑑 �⃗� = 𝜖 ∑" 𝑑 ln 𝛼" (𝑧, ̅𝑧) 𝑚" �⃗�,

Switch to variables 

DE can be brought into canonical form with rational letters

𝛼 = {𝑧, 1 − 𝑧, ̅𝑧, 1 − ̅𝑧 , 𝑧 − ̅𝑧}

Stereographic projection

√Δ = 𝑧 − ̅𝑧 = 4𝑖
𝜖 𝑝! , 𝑝# , 𝑝G , 𝑞

𝑠!# 𝑠G4



The symbol level cross check :  
two-loop five-point amplitudes in N=4 SYM 

𝑠!" = 𝑥[1]; 𝑠"# = 𝑥[2] 𝑥[4];
𝑠#$

= 𝑥 1 𝑥 4 −
𝑥 3 1 − 𝑥 4

𝑥 2
+ 𝑥[3] (𝑥[4]

− 𝑥[5]);
𝑠$% = 𝑥 2 𝑥 4 − 𝑥 5 ; 𝑠!% = 𝑥[3] (1 − 𝑥[5]);

𝑥 1 → 𝑠, 𝑥 2 → 𝑠 𝑥, 𝑥 3 → −𝑠 𝑥/(1 − 𝑧),

𝑥 4 → 1 + 𝑑
𝑥 + ̅𝑧
1 − ̅𝑧

, 𝑥 5 → 1 + 𝑑 (1 +
𝑥 + ̅𝑧
1 − ̅𝑧

)

In the soft limit p5-> 0, d-> 0, 

Summing over dipole and tripole contributions, using color conservation, 
non planar dipole contribution cancels out.

𝑆,,"./
$(0) = 𝑉1,".0 𝑓,,&2 𝑓2,',( 𝑇"

,' 𝑇.
,( 𝑇/

,&

[
𝑖𝑘

𝑖𝑞 𝑞𝑘
𝐹 𝑧/

"., 𝜖 −
𝑗𝑘

𝑗𝑞 𝑞𝑘
𝐹 𝑧/

.", 𝜖 ]



𝑆,,"./
$(0) = 𝑉1,".0 𝑓,,&2 𝑓2,',( 𝑇"

,' 𝑇.
,( 𝑇/

,& [
𝑖𝑘

𝑖𝑞 𝑞𝑘
𝐹 𝑧/

"., 𝜖 −
𝑗𝑘

𝑗𝑞 𝑞𝑘
𝐹 𝑧/

.", 𝜖 ]

𝐹 𝑧, ̅𝑧, 𝜀 = %
3)
𝐿)𝐿% +

%
4 3

𝐿%0𝐿) − 2 𝐿)𝐿%0

− 𝐿%(
0
5
𝐿)𝐿% +

%
4
𝐿)0𝐿% +

%4
%6
𝐿)𝐿%0 +

7
%0
𝐿%4 ) +

]

+𝜁0(2𝐿),% − 𝐿)𝐿%) +
40
3 𝜁4𝐿% + 𝑂 𝜀

𝜕8𝐿9*,9 ≔ −1 9* %
8'9*

𝐿9,  

𝐿)+ ∶=
%
!!
log!(𝑧 ̅𝑧), 𝐿9= 0, ∀ 𝑤 ≠ 0, 𝑧 = 0.

Simple-
valued 
Harmonic 
Polylogarith
-ms

Symmetric under z<->1-z



Alternate definition of of the tripole term: 

Sum over permutations among the three Wilson lines,  project onto 
independent color and kinematic basis 



In terms of SVHPLs:  

In terms of the F(z) defined earlier, 

D_i (z) vanishes as z-> 0

Triple term S_{i,j,k} is manifestly invariant under z à ( 1/z , 1/(1-z)  ,  z/(z-1) ) 





Region Kinematics analytic 
continuation

𝐴9 all outgoing 𝑢G
!# → |𝑢G

!#| 𝑣G
!# → |𝑣G

!#|
𝐴% j,k incoming,  q,i

outgoing
𝑢G
!# → |𝑢G

!#| 𝑣G
!# → |𝑣G

!#|e+&!I

𝐴& i incoming,  q,j,k
outgoing

𝑢G
!# → |𝑢G

!#| 𝑣G
!# → |𝑣G

!#|

A0 A1 A2

𝑠!G𝑠4#
𝑠!#𝑠4G

≔ 𝑢 ,
𝑠#G𝑠!4
𝑠!#𝑠4G

≔ 𝑣 .



Analytic continuation of SVHPLs

𝑑 𝐷𝑖𝑠𝑐8 𝐿9 𝑧 = 𝐷𝑖𝑠𝑐8 𝑑 𝐿9 𝑧

Starting from weight 1,  build the analytic continuation for
higher weight  SVHPLs by requiring consistency with the differential equations. 

Bottom up approach: compute the discontinuity of differential and integrate back 

In A1 region



arg 𝑧

𝑝#H

𝑞H

𝑝G

0 1

𝑝#

𝑝!
𝑞

|𝑧G
!#|

D_1,2 are single-valued functions in A1 region

ln
1 − 𝑧
1 − ̅𝑧

is ambiguous along the branch cut. The argument of 

Disc_A1  D_1,2 no longer satisfies first entry condition, 
they develop branch cut the real axis for |z|>1. 

The boundary z= zb is kinematically accessible and does 
not correspond to physical singularity.
Ambiguity  must cancel in the amplitude. 

ln %'8
%' ̅8̅

(ln %'8
%'8̅

+ 2𝜋 𝑖 ) (ln %'8
%'8̅

− 2𝜋 𝑖 )

Disc_A1  D_1,2 are smooth function in the neighbourhood of Im z= 0 . 





In spacelike splitting,  the picture of  coherent soft emission breaks down. 
The physical origin of the breakdown is related to the Feynman iε	prescription, 
and therefore to the causality of the theory.

Strict collinear factorization breaks down in spacelike regime. 
The splitting amplitude contains IR poles that depend  on  both the color and 
kinematics of non-collinear partons. 

Catani, de Fllorian, Rodrigue 2012

Collinear factorization violation 



Consider spacelike splitting at two loops, 
where particle 1 is an incoming parton with momentum −p1 

Factorization breaking term is purely imaginary (anti-hermitian), 
cancels in the squared amplitudes

𝑉!#
4 := 

J! (+?%#)
(+?%")(+?"#)

K
develop a phase when i,j are both incoming.

Collinear limit of two-loop soft factor in A1 region 



Without loss of generality, consider the analytic continuation of the 
tripole term to the A1 region where {1, k} are incoming and {i, q} are 
outgoing. 



commutator between two Hermitian operator [(T q · T i), (T q · T k)], when 
sandwiched between tree amplitudes ⟨M(0)|···|M(0)⟩ the color sum vanishes.



hard-scattering / pdf factorization is endangered in the production of 
high-pT hadrons in hadron-hadron collisions at N^3LO? 

Phase-space integrals of the splitting function might generate
collinear divergences that cannot be removed by pdf counterterm

Squared splitting amplitude



An counterexample for TMD factorization was construct is for 
the single-spin asymmetry 
with one beam transversely polarized. (in a  greatly simplified 
model theory)

SCET effective operator  Glauber mode exchanged between 
hard partons. The double Glauber ladder diagram produce the 
same two-loop constant as we find the soft emission factor. 

Schwartz, Yan, Zhu  1703.08572

Collins,Qiu, 0705.2141

Calculations in these studies was done 
without assuming soft limit



The intricate analytic property of tripole terms poses a strong constraint 
which may be useful for obtaining  higher-loop results of full amplitudes 
by their analytic properties 

We provide results for two-loop soft emission factor which involves three 
parton correlation.  It may serve as a building block for IR subtraction for 
N3LO  phase-space integral both in e+e- and hadron colliders. 

Collinear factorization breaks down at NNLO in the scattering amplitude.  
This observation could potentially endanger factorization for inclusive 
cross section in dijet production at high-pT .  

Summary



Thank you for your attention .


