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Overview

Brief introduction to (next-to-) soft divergences.

Applications in Collider Physics (mainly QCD).

Applications in high energy scattering (mainly gravity).

Outlook.
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Infrared divergences

In scattering amplitudes, get singularities due to soft or
collinear gauge bosons:

p

k

1

p · k
=

1

|p||k |(1− cos θ)
.

Formal divergences cancel
upon combining real and
virtual graphs.

Both soft and collinear radiation is universal.

Physics: it has an infinite wavelength, so cannot resolve the
underlying amplitude.
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Factorisation

Universality of soft / collinear radiation is expressed in
factorisation formulae.

Example: consider a tree-level amplitude An+1({pi}, k) where
momentum k becomes soft. We then get the soft theorems

lim
kµ→0

An+1({pi}, k) = S(0)({pi}, k)An({pi}),

where

S(0)
QED =

n∑
i=1

εµ(k)pµi
pi · k

, S(0)
grav. =

n∑
i=1

εµν(k)pµi p
ν
i

pi · k

(Yennie, Frautschi, Suura; Weinberg).

All dependence on the soft momentum k is in the overall
factor S.
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Next-to-soft theorems

It is also possible to write such formulae at one order higher in
the k expansion (Cachazo, Strominger; Casali):

An+1({pi}, k) =
[
S(0) + S(1)

]
An({pi}),

with

S(1)
QED =

n∑
i=1

εµkρJ
(i)µρ

pi · k
, S(1)

grav . =
n∑

i=1

εµkρJ
(i)µρ

pi · k
,

where J
(i)
µν is the total angular momentum of (hard) particle i .

hep-th calls these the next-to-soft theorems. Intense activity
since 2014.

However, there is a surprisingly long (pre)-history!
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History of next-to-soft physics

Next-to-soft effects were first studied in gauge theory (QED)
by Low (1958).

He considered external scalars; generalised to fermions by
Burnett and Kroll (1968).

Both groups only considered massive particles (no collinear
effects).

Similar work in gravity by Gross, Jackiw (1968).

Del Duca (1990) generalised the Low-Burnett-Kroll result to
include collinear effects.
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Path integral approach

Next-to-soft effects for massive particles considered using
worldline methods by Laenen, Stavenga, White (2008).

Can replace propagators
for external legs by
quantum mechanics path
integrals.

Leading term in
perturbative expansion is
classical trajectory (soft
limit).

First-order wobbles give
next-to-soft behaviour.

Also works for gravity (White, 2011).
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Applications

The history of next-to-soft physics suggests that there are
many applications.

Indeed, these have been reinvigorated by the recent work on
next-to-soft theorems.

The aim of this talk is to review some of these applications.

Key message: next-to-soft physics connects hep-th, hep-ph,
hep-ex and gr-qc!
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Collider Physics

A major application of (next-to) soft physics is to collider
physics.

We saw earlier that IR singularities cancel when real and
virtual diagrams are combined.

However, the cancellation can leave behind large contributions
to perturbative quantities.

Consider e.g. the production of a vector boson at a collider
(“Drell-Yan production”):

Q

p

p
_

Let z = Q2/s be the fraction of
(squared) energy s carried by
the vector boson.

At LO, z = 1, and thus the
cross-section is

dσ(0)

dz
∝ δ(1− z).
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Drell-Yan production

At next-to-leading order (NLO), radiation can carry energy, so
that

0 ≤ z ≤ 1.

The NLO cross-section then turns out to be

dσ
(1)
qq̄

dz
∼ αs

2π

[
4(1 + z2)

(
ln(1− z)

1− z

)
+

− 2
1 + z2

1− z
ln(z)

+δ(1− z)

(
2π2

3
− 8

)]
.

It contains highly divergent terms as z → 1.

Looks like perturbation theory is in trouble!

Let’s go one order higher and see what happens...
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At NNLO the problem is even worse! One has

dσ
(2)
qq̄

dz
∼ C 2

F

(αs

2π

)2
[

128

(
ln3(1− z)

1− z

)
+

− 256

(
ln(1− z)

1− z

)
+

+ . . .

]
,

where . . . denotes terms suppressed by (1− z).

Logs get higher at higher orders in perturbation theory...

... which indeed breaks down as z → 1.

Precisely the regime where the vector boson is produced near
threshold, so that extra radiation is soft / collinear!

The problem terms are echoes of IR singularities having been
present.

Thus, this problem affects many different scattering
processes...
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General structure of threshold logarithms

For heavy particles produced near threshold, we can define a
ξ, where ξ → 0 at threshold (e.g. ξ = (1− z)).

Then the general structure of any such cross-section is:

dσ

dξ
=
∑
n,m

αn

[
c

(0)
nm

(
lnm ξ

ξ

)
+

+ c
(1)
nm lnm ξ + . . .

]
.

First set of terms correspond to (leading) threshold logs: pure
soft and / or collinear.

Second set of terms is next-to-leading power (NLP) threshold
logs: next-to-soft and / or collinear.

For ξ → 0, we need to rethink perturbation theory.
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Resummation

The solution to this problem is to somehow work out what the
large logs are to all orders in αs .

Then we can sum them up to get a function of αs that is
better behaved than any fixed order perturbation expansion.

Toy example: consider the function

e−αsx =
∞∑
n=0

αn
s (−x)n

n!
.

Each term diverges as x →∞, but the all-order result is
well-behaved.
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Resummation approaches

Many approaches exist for resumming leading threshold logs.

There are many (hundreds?) of observables at e.g. the LHC
for which this is relevant.

Original diagrammatic approaches by e.g. Sterman; Catani,
Trentadue.

Can also use Wilson lines (Korchemsky, Marchesini), or the
renormalisation group (Forte, Ridolfi).

A widely used approach is to treat soft and collinear gluons as
separate fields in an effective theory: soft-collinear effective
theory (SCET) (Becher, Neubert; Schwartz; Stewart).

All approaches have the factorisation of soft / collinear
physics at their heart.
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Soft-collinear factorisation

The general structure of an n-point amplitude is

An = Hn × S ×
∏

i Ji∏
i Ji

.

This is the virtual generalisation of the soft theorem.

Here Hn is the hard function, and is IR finite.

The soft and jet functions S and Ji collect soft / collinear
singularities respectively.

The eikonal jets Ji remove any double counting.

The soft and jet functions have universal definitions in terms
of Wilson line operators.
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Resummation from factorisation

The soft-collinear factorisation formula leads directly to
resummation of threshold effects.

Related ideas in other approaches (e.g. SCET).

Summing successive towers of threshold logs requires
calculating the soft and jet functions to a given order in
perturbation theory.

State of the art is two loops (Sterman, Aybat, Dixon,
Kidonakis, Mitov, Sung, Becher, Neubert, Beneke, Falgari,
Schwinn, Ferroglia, Pecjak, Yang).

Progress towards three-loops and beyond (Gardi, Laenen,
Stavenga, Smillie, White, Almelid, Duhr, Korchemsky, Henn,
Huber, Grozin, Marquard, Correa, Maldacena, Sever).

16 / 44



Next-to-leading power logs

To date, much less has been known about NLP effects.

Known for a while to be numerically significant e.g. in Higgs
production (Kramer Laenen, Spira; Harlander, Kilgore; Catani,
de Florian, Grazzini, Nason).

This has been confirmed by recent N3LO Higgs results
(Anastasiou, Duhr, Dulat, Herzog, Mistlberger).

There are three good reasons to study NLP logs:
1 Resummation of them will improve precision.
2 Even without resummation, NLP logs may provide good

approximate NnLO cross-sections.
3 Can improve the stability of numerical codes.
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Next-to-soft effects in particular scattering processes classified
to all orders by (Almasy, Moch, Presti, Soar, Vermaseren,
Vogt).

Can also be classified using the method of regions (Beneke,
Smirnov, Pak, Jantzen). See e.g. Bonocore, Laenen, Magnea,
Vernazza, White.

None of the previous approaches is fully general - but strong
hints of an underlying structure.

Can we predict NLP logs in an arbitrary process?

Can they be written in terms of universal functions (like LP
effects)?

Encouraging recent progress...
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SCET approach

It is well-known that LP effects can be described using
Soft-Collinear Effective Theory SCET (Stewart, Schwartz,
Bauer, Fleming; Becher, Neubert).

The same language can be extended to NLP level.

Originally explored in B physics (Beneke, Campanario,
Mannel, Pecjak).

Recent study for scattering amplitudes (Larkoski, Neill,
Stewart).

Phenomenology explored by Feige, Kolodrubetz, Moult,
Stewart, Rothen, Tackmann, Zhu; Boughezal, Liu, Petriello.

Recent resummation of leading NLP log for some observables
(Moult, Stewart, Vita, Zhu; Beneke, Broggio, Jaskiewicz,
Vernazza).
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Factorisation approach

The soft-collinear factorisation formula can be generalised to
next-to-leading power level (Bonocore, Laenen, Magnea,
Melville, Vernazza, White).

A new quantity appears at next-to-soft level: the jet emission
function.

Has been calculated at one-loop level for quarks.

p

n

Calculation for gluons in
progress.

Further such functions are
needed for general processes
(Gervais)...

...which have counterparts in
the SCET approach.
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Resummation of NLP contributions

For leading logs, the jet emission functions do not contribute.

One may then show that the LL NLP logs indeed
exponentiate, and can be resummed (Bahjat-Abbas,
Bonocore, Sinninghe Damsté, Laenen, Magnea, Vernazza.
White).

Results agree with SCET approach (Beneke, Broggio,
Jaskiewicz, Vernazza)...

...and previous conjectures (Moch, Vogt).

Furthermore, the argument works for arbitrary colour-singlet
production processes (e.g. (multi-) Higgs production).

Further work will involve:
1 Inclusion of other partonic channels.
2 Extension to arbitrary processes.
3 Numerical studies and implementations.
4 Extension to NLL and beyond (difficult!).
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Universal NLO corrections

Even at fixed order, next-to-soft corrections can be useful.

...

p
1

p
2

p
3

p
4

p
N + 2

j

i

Consider emission of an
additional gluon of momentum
k, up to NLP level.

Next-to-soft theorems imply the
general NLP amplitude (Del
Duca, Laenen, Magnea,
Vernazza, White):

|ANLP|2 ∼
p1 · p2

p1 · k p2 · k
|ALO(p1 + δp1, p2 + δp2)|2,

where

δpα1,2 = −1

2

(
p2,1 · k
p1 · p2

− p1,2 · k
p1 · p2

pα2 + kα
)
.
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Universal NLO cross-sections

The formula works fully differentially.

Also leads to a universal form of the cross-section (same in
quark or gluon channel):

1

σ̂LO(zs)

d σ̂NLP

dz
=
αs

π

(
µ̄2

s

)ε [
2−D0

ε
+ 4D1(z)− 4 log(1− z)

]
,

where z → 1 at threshold.

Formula works if LO process is tree-level or loop induced.

Recent extension to prompt photon production (van Beekveld,
Beenakker, Laenen, White).

These and similar ideas can be used to:
1 Provide approximate higher-order cross-sections.
2 Constrain future analytic calculations.
3 Improve stability of NLO subtraction schemes (see e.g.

Boughezal, Isgrò, Petriello).
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Collider Physics - Summary

Next-to-soft physics has a large number of applications in
collider physics.

Typically this involves summing up large terms in perturbative
cross-sections...

... or finding approximate forms for fixed-order cross-sections.

Such calculations improve the precision of theory predictions
at the LHC.

Current data demands this precision!
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Next-to-soft gravity

So far we have focused on next-to-soft corrections in QCD.

However, they have a different role to play in understanding
the conceptual structure of quantum gravity...

...and may even have phenomenological consequences!

More specifically, they are relevant to high energy scattering.

Many papers from the 1990s onwards (Amati, Ciafaloni,
Veneziano, Colferai, Falcioni; ’t Hooft; Verlinde2; Jackiw,
Kabat, Ortiz).
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Transplanckian scattering

More specifically, we will focus on 2→ 2 scattering in the
high energy or Regge limit

s � |t|,

where s is the squared centre of mass energy, and |t| the
momentum transfer.

Corresponds to scattering above the Planck scale in gravity.

Näıvely, we might think that non-renormalisability is a
problem.

However, in this limit infinite numbers of soft gravitons are
exchanged, and the results are well-behaved!
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Can consider different regions in impact parameter b
(conjugate to |t|), and energy E ∼

√
s:

(see e.g. Giddings, Schmidt-Sommerfeld, Andersen).

Next-to-soft corrections probe unknown parts of this diagram.
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QCD meets gravity

It is possible to understand the gravity behaviour using
QCD-like methods.

Starting with QCD, there is a nice way to understand the
Regge limit in terms of two Wilson lines separated by a
transverse distance (Korchemsky, Korchemskaya).

See also Balitsky; Caron-Huot.

1

2

3

4

b

Take particles of mass m,
such that

s � −t � m2.

b is the (2-d) impact
parameter (distance of
closest approach).
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Position space amplitude

Using known exponentiation properties of Wilson lines, one
finds

A = exp

{
K

[
iπT2

s + T2
t log

(
s

−t

)]
+ . . .

}
, K =

g2
s Γ(1− ε)

4π2−ε
(µ2b2)ε

2ε

There are two terms with non-trivial colour dependence:

(i) A t-channel term: ∝ T2
t log( s

−t ).

(ii) A pure eikonal phase: ∝ iπT2
s .

The former is responsible for Reggeisation of t-channel
exchanges:

− iηµν
q2
− > − iηµν

q2

(
s

−t

)α
The latter describes a spectrum of bound states (e.g.
positronium).
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Eikonal phase and Regge trajectory

The eikonal phase comes from horizontal (crossed) ladder
diagrams, whereas the Regge trajectory comes from vertical
ladders.

(a) (b)

...
...

In QCD, the vertical ladders dominate.
It is known that horizontal ladders dominate in gravity: the
eikonal phase is enhanced by a factor s/(−t) w.r.t. the
Reggeisation term.
The Wilson line approach gives an elegant view on this.
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Wilson lines for gravity

First, we need to find appropriate Wilson lines for gravity.

Here, we mean specifically the operator describing soft
graviton emission.

The relevant quantity has appeared in various places
(Brandhuber, Heslop, Spence, Travaglini; Naculich, Schnitzer;
White):

exp

[
iκ

2

∫
C
ds ẋµ ẋνhµν(x)

]
.

For straight line contours xµ = xµ0 + pµs, this becomes

exp

[
iκ

2
pµ pν

∫
C
dshµν(x)

]
.

Closely related to its QCD counterpart!

31 / 44



Position space gravity amplitude

Carrying out the Wilson line Regge limit calculation in gravity
gives (Melville, Naculich, Schnitzer, White)

M = exp

{
−Kg (µ2b2)ε

[
iπs + t log

(
s

−t

)]
+O(ε0)

}
,

Kg =
(κ

2

)2 Γ(1− ε)
8π2−ε .

The eikonal phase wins as s
−t →∞, in contrast to QCD.

However, the structure of the result is basically the same, and
can be obtained by the procedure

gs →
κ

2
; T2

s,t → s, t.

This is the BCJ double copy! (see also Akhoury, Saotome;
Sabio Vera, Campillo, Vazquez-Mozo, Johansson).
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Next-to-soft corrections

Diagrammatic study of Regge limit by Akhoury, Saotome,
Sterman.

Considered a light particle scattering on a black hole.

Next-to-soft corrections lead to a modifed eikonal phase:

χ→ χE + χNE.

Similar results from the Wilson line picture (Luna, Melville,
Naculich, White).

Correction corresponds to classical deflection angle of light
particle (see also D’Appollonio, Di Vecchia, Russo, Veneziano;
Bjerrum-Bohr, Donoghue, Holstein, Plante, Vanhove; Chi).
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Classical GR from amplitudes

More generally, how to get classical GR results from scattering
amplitudes is an open problem.

Huge amounts of recent attention, due to LIGO!

The (next-to)soft expansion appears to be at least partially
related to the ~ expansion (Kosower, Maybee, O’Connell).

In any case, we would like to be able to classify the general
structure of next-to-soft effects, including their universality
(c.f. QCD).

One way to do this is to use explicit (super-)gravity results at
higher loop orders (Henn, Mistlberger; Bern, Ita,
Parra-Martinez, Ruf; Abreu, Febres Cordero, Ita, Jaquier,
Page, Ruf, Sotnikov).
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Graviton scattering in N = 8 SUGRA

Recently, 2→ 2 graviton scattering was calculated at 3-loop
order in N = 8 SUGRA (Henn, Mistlberger).

In SUGRA theories, the tree-level amplitude can be factored
out.

Given the known exponentiation of IR divergences, it is then
conventional to write the amplitude as

A = A(0)eαGA(1)
eF , αG =

GN

π~
(4π~2)ε

Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
,

where the remainder function F starts at 2-loop order, and
sbould be IR finite.

This exponentiation takes place in momentum space.
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A puzzle

The remainder function calculated by Henn & Mistlberger
contains terms of the form

F (2) = 3π2s2εζ3 +O(ε2, s), F (3) = −2i

3
π3s3ζ3 +O(ε, s2)

which are leading in the Regge limit.

This was initially puzzling, given that all leading Regge
contributions should be captured by the exponentiation of the
one-loop result...

...which leaves no room for them in the remainder function!
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A resolution

To see what has gone wrong, note that the exponentiation of
the eikonal phase happens in position space.

This is different to exponentiating in momentum space, at
subleading orders in ε.

One may indeed show that exponentiating in position space
before Fourier transforming correctly predicts the high energy
behaviour of the remainder function (Di Vecchia, Luna,
Naculich, Russo, Veneziano, White).

Problem solved, but can we go further?

E.g. can we test possible ansätze for corrections to the Regge
limit, using the known remainder functions?
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Generalised Regge ansatz

A possible guess for the (momentum-space) amplitude up to
first subleading power in s/(−t) is (Di Vecchia, Naculich,
Russo, Veneziano, White)

iA

2s
= A(0)

∫
dD−2be−ibq/~

[
(1 + 2i∆(s, b)) e2iδ(s,b) − 1

]
.

Here q is the momentum transfer, which is conjugate to the
impact parameter b.

The exponent δ(s, b) is a generalised eikonal phase, whose
higher orders lead to corrections to the classical deflection
angle.

The function ∆(s, b) encodes quantum corrections, and does
not have to be formally exponentiated.
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Testing the ansatz

One may expand the previous formula perturbatively, and fix
higher-order contributions to the functions δ and ∆.

Once they have been fixed, one can then see if all terms in the
remainder function of Henn & Mistlberger are correctly
predicted, up to first subleading power in s/t.

This does not quite work (Di Vecchia, Naculich, Russo,
Veneziano, White)!

Mismatch occurs at sub-sub-sub-leading level in ε.

May be a subtle dimensional regularisation issue...

...so I will not speculate more for now.

But the agreement is otherwise very impressive!
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Results in other theories

Recently, two-loop results for the 2→ 2 graviton amplitude
have been presented in pure GR, and N ≥ 4 SUGRA (Bern,
Ita, Parra-Martinez, Ruf).

The correction to the classical deflection angle (i.e.
subleading correction to δ) is found to be universal.

There is no obvious explanation for this at present...

...so finding one would be interesting!

It would also be nice to see how much structure of the results
one can get right using the generalised eikonal ansatz.
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High energy scattering - summary

Next-to-soft corrections are relevant to transplanckian
scattering in gravity...

... and scattering black holes.

Corrections to the Regge limit allow us to systematically
obtain the classical deflection angle, as well as predict lots of
other structure in higher-loop amplitudes.

How to go beyond the leading Regge limit is very much an
open question in a variety of theories.
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Conclusion

(Next-to)-soft physics has a large number of applications, in
different areas of physics.

For hep-ph, hep-ex: increased precision for collider
observables.

For hep-th, gr-qc: transplanckian scattering in gravity, black
hole scattering.

Common languages for QCD and gravity (e.g. Wilson lines)
make underlying structures / common behaviour clearer.
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Open questions

Can we resum next-to-leading power (NLP) threshold logs?

Other applications in precision physics?

How do we use next-to-soft corrections to get classical GR
results...

...or other interesting bits of amplitudes?

How exactly is this related to the ~ expansion?

What else are gravitational Wilson lines useful for?
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Thanks for listening!
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