Complex multi-loop results
via finite-field techniques

Tiziano Peraro
Paris Winter Workshop: The Infrared in QFT — 3 March 2020

Based on:
T. P., JHEP 1612 (2016) 030, arXiv:1608.01902

E
g, 9 TP, JHEP 1907 (2019) 031, arXiv:1905.08019

IMARIE CURIE

Introduction & motivation

Experiments at LHC
e high-accuracy (% level)
e large SM background

e high c.o.m. energy = multi-particle states

We need scattering amplitudes

e high accuracy = loops (% level ~ 2 loops)

e multi-particle = high multiplicity

Theoretical studies of amplitudes

e structures of QF T /gauge theories

State of the art of scattering amplitudes

e Tree-level and one loop

e today, mostly numeric
e essentially solved
e automated

e Two and higher loops

e many calculations in recent years ...
e ...but still some open issues

e until recently, restricted to 2 — 2 processes
e beyond MPLs not well understood

Two and higher loops

e Algebraic calculations for multi-loop amplitudes
e preferred strategy © ¢ > 2 loops

e faster/more stable evaluation
e better suited for many multi-loop techniques
e allows more tests, studies, etc...and better control

e often characterized by high complexity

e Complexity can be a combination of
e number of loops for high accuracy
e number of legs for high multiplicity
e numbers of scales (invariants, external/internal masses)

Loop amplitudes

e An integrand contribution to /-loop amplitude

4
o N
_ I]
A_/_oo (izld k) Dy Dy Dy

e rational function in the components of loop momenta k;
e polynomial numerator A/
e quadratic denominators corresp. to loop propagators

Ly >

l3 D; =2 — m?

Computing amplitudes: Step 1/3

e Write amplitudes as I.c. of Feynman integrals
.A = Zajlj
J

e Dependence on particle-content in rational coeff.s a;

e The integrals should have a “nice” / “standard” form

J4
- 1
= dy, \ 4L -
I= /_oo (Hd]ﬂ) D(lxl D(sz Dg{; 0 aj = 0
i=1

Dj_{ lf-—m?

.. o — 2
l;-v; m;

l 12/

I3

Hard to do at
high multiplicity

Computing amplitudes: Step 2/3

Chetyrkin, Tkachov (1981), Laporta (2000)

e Feynman integrals obey linear relations, e.g. |IBPs

/(Hdd) 1 s b — pl' external
ak:“ Df“ Dg2... 7 k' loop

e Very large and sparse linear systems

e Reduce to linearly independent Master Integrals (Mls)
{Gla G27 ©o } C {I]}

Ij = chk Gk
k

Computing amplitudes: Step 3/3

e The Mls can often be computed analytically
e in terms of special functions (MPLs, elliptic, ...)
e most effective method is differential equations (DEs)
Kotikov (1991), Gehrmann, Remiddi (2000)
e can be simplified by the choice of Mls, e.g. UT integrals
Henn (2013)

e Numerical methods may work depending on the process

e the most successful is sector decomposition
Binoth, Heinrich (2000)
e can be improved via IBP reduction to a “better” basis of Mls

Computing amplitudes

Computing amplitudes (summary)

1. Integral representation A = Zj @il
2. IBP reduction I; =Y, cji Gk
3. Compute Mls G,

A major bottleneck

e Large intermediate expressions

e Intermediate stages much more complicated than final result

Main idea of the talk

e Reconstruct analytic results from “numerical” evaluations

e Can be used for steps 1, 2 and help with step 3 (e.g. using DEs)

Finite fields and functional reconstruction

Functional reconstruction

e reconstruct analytic results from numerical evaluations

e evaluation over finite fields Z, (i.e. modulo prime integers p)
e use machine-size integers, p < 264 = fast and exact
e collect numerical evaluations and infer analytic result

e sidesteps large intermediate expressions & highly parallelizable
e applicable to any rational algorithm

e first applications

e |BPs and univ. reconstruction von Manteuffel, Schabinger (2014)
e helicity amplitudes and multivariate reconstruction T.P. (2016)

Some notable examples

e FINRED (private) [von Manteuffel]
e several results for 4-loop form factors [von Manteuffel, Schabinger]
e FINITEFLOW [T.P]
e Several two-loop five-point amplitudes
[Badger, Brgnnum-Hansen, Hartanto, T.P.;
Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia]
e Matter dependence of the four-loop cusp anomalous dimension
[Henn, T.P., Stahlhofen, Wasser]
e CARAVEL (private)
[Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]
e analytic five-parton amplitudes
e F'IRE 6 [A.V. Smirnov, F.S. Chuharev]

e Four-loop quark form factor with quartic fundamental colour

factor [Lee, Smirnov, Smirnov, Steinhauser]

10

The black-box interpolation problem

Given a rational function f in the variables z = (z1,...,z2,) over Q

e Reconstruct analytic form of f, given a numerical procedure

(z,p) —| f |— f(z) mod p.

e evaluate f numerically for several z and p

e efficient multivariate reconstruction algorithms exist
e.g. T.P. (2016,2019), Klappert, Lange (2019)

e upgrade analytic f over Q using rational reconstruction algorithm
[Wang (1981)] and Chinese remainder theorem

11

The black-box interpolation problem

Given a rational function f in the variables z = (z1,...,z2,) over Q

e Reconstruct analytic form of f, given a numerical procedure

(z,p) —| f |— f(z) mod p.

e evaluate f numerically for several z and p

e efficient multivariate reconstruction algorithms exist
e.g. T.P. (2016,2019), Klappert, Lange (2019)

e upgrade analytic f over Q using rational reconstruction algorithm
[Wang (1981)] and Chinese remainder theorem

Question in this talk
How to build the black box?

11

Example: Scattering amplitudes over finite fields

T.P. (2016)

External states (momenta and polarizations)

e rational parametrization with momentum twistors variables
Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

Tree-level

e diagrams or recursion relations (e.g. Berends-Giele)

Loop integrands

e Feynman diagrams and t'Hooft algebra
e Unitarity cuts sewing tree-level currents

e higher finite-dim. representation of internal states in dim. reg.

Integrand reduction

e linear fit to a “nice” integrand basis

12

How to build the black box?

How to build a code for fast numerical evaluations of finite fields?
We can consider a few options:

1. Low-level coding (e.g. in C/C++/FORTRAN)?
v/ very good runtime efficiency
X harder to program
X limits usability

2. Low-level coding + high-level interfaces?

e common algorithms in C++ (e.g. linear solvers, fits, etc. . .)
e high-level wrapper (e.g. for MATHEMATICA /PYTHON)

v good efficiency and usability

X not flexible

X these algorithms are often intermediate steps

13

How to build the black box?

Observations:

e A typical multi-loop algorithm involves several steps

e solving linear systems
e substitutions / changes of variables
e etc...

e Large simplifications often occur at the very last stages

e it's best to do everything numerically
e only the final expression reconstructed analytically

e Many algorithms share common “building blocks”

14

FiniteFlow: using data flow graphs

FINITEFLOW [T.P. (2019)] has three main components

1. "basic” algorithms in C++ over finite fields

e dense/sparse linear solvers, linear fits, evaluating rat.
functions, list manipulations, etc. ..

2. higher-level framework to combine them into complex ones

e output of a basic algorithm is input of others
e graphical representation of your calculation (dataflow graphs)

3. multivariate reconstruction algorithms

FiniteFlow
e build complex algorithms without any low-level programming
(e.g. from MATHEMATICA interface)

e many methods for amplitudes can be cast in this framework

ii5)

FiniteFlow: using data flow graphs

e FINITEFLOW uses (simplified) data flow graphs

e Nodes represent numerical algorithms

e Arrows represent lists of numerical values
e In my implementation, a node has

e 0 or more lists (arrows) of input values
e 1 list (arrow) of output values

/nputs

output

16

Example of a graph

input
node

evaluate @ @
a;

17

Example: Evaluation of rational functions

e input: a list of values z = (z1,..., 2,)
e output: a list of rational functions {f1, fo,...} at 2z

pi(z) D oMiaz®

fz(z) = Q7,(z) - Zg dz,,ﬁ =B

r— M {f1(2), fo(2), ...}

18

Example: Matrix multiplication

e Two lists as input

1. entries of a matrix A
2. entries of a matrix B

e use row-major order to store them as a list

e ouput: entries of matrix C' such that

Cij = Ay By
ks

Do

19

Example: Linear solver

e A n x m linear system with parametric rational entries
m
ZAZ']‘Q}]‘ :bi, (izl,...,n), Aij :Aij(z), bi:bi(z)
j=1

e input: list of values for paramers z = (z1,...,2,)

e output: solution ¢;; = ¢;;(z) such that

T; = Z Cij Tj + Cio (Z ¢ indep)
j€indep

linear
z solver {Cij (z)}

20

Learning algorithms

e Some algorithms have a learning phase

e used to learn information for defining its output
e must be completed before using them

e Example: linear solver

e learn: its rank, dep. and indep. unknowns, indep. eq.s
e learning phase: solve the system numerically a few times
e optional: mark & sweep equations (sparse solver)

= It can be used to simplify the algorithm

see also e.g. KIRA: Maierhofer, Usovitsch, Uwer (2017)

21

IBP reduction

e IBPs are large and sparse linear systems

e they reduce Feynman integrals /; to a lin. indep. set of Mls G;

Ii = ZCU Gj

J
e amplitudes and other multi-loop objects can be reduced mod IBPs

A:Zaj[j:Zajc.jka:ZAjGj, WithAj=Zakckj
J Jk J k

e final results for Aj;, often much simpler than ¢;;

= solve IBPs numerically and compute A; via a matrix multiplication

22

IBP reduction

input
node

evaluate

a;

&

output

23

Differential equations for Mls

e The Mls Gy, satisfy differential equations
Kotikov (1991), Gehrmann, Remiddi (2000)

0:Gi=> AD G,
J

e |dentify Mls G; (e.g. by solving IBPs numerically)

e Compute their derivatives in terms of (non-master) loop integrals

0:Gi=> al I;
J

e Reduce the needed integrals modulo IBPs: I; = . ¢;; G;

e The final result is given by a matrix multiplication
AP = o o
k

)

e Reconstruct AE; analytically from its numerical evaluations

24

Differential equations for Mls

input
node

evaluate
o@

ij

output

25

Subgraphs

e Any graph G can be used as a subgraph by an algorithm (a node)
A belonging to another graph G2

e A will evaluate Gy several times to compute its output
e input of G; = auxiliary variables chained with inputs of A

Examples:

. e Laurent expansion
. e maps: evaluate Gy

for several inputs

Il

G] = G2

Subgraph

e partial reconstructions

e (total or partial) fits
w.r.t. an ansatz

26

Coefficients of the c-expansion

e If Mls are known analytically in terms of special functions f
Gj = Z gik(€) fr + O(e),
k
we can compute

A= Z Uk(ev ‘L) fk+0(6)7 where uk(ea ‘L) = Z Aj(ca I) gjk(ea ‘L)
k J
e what we want is the e-expansion of the wug(e, z)

0

ur(e,2) = Y ud (@) € + Oe),

Jj=-p

27

Coefficients of the e-expansion

input input
node node
Gy =
Laurent
output output

28

Reconstruction of amplitudes

Observations:

e we can detect linear relations btw. the coefficients of the amplitude
and reconstruct a simpler subset of linearly independent ones

e we can subtract IR divergencies predicted from lower orders by
A=z A

e this can also be used to subtract a finite contribution
e significantly simplifies result and reconstruction

Open question:

e Can we improve this subtraction of finite pieces?

29

Cutting-edge applications of FiniteFlow

e Matter dependence of the 4-loop cusp anomalous dimension
Henn, T.P., Stahlhofen, Wasser (2019)

(see also: Lee, Smirnov, Smirnov, Steinhauser (2019))

s N s N
N N

’ Ay ’ ~
. AN ’ AN
’ . ’ ~
. Ay . N
v AN P2 AN
2
v N s N s
~ ~
s N s N
. v

30

Cutting-edge applications of FiniteFlow

e Five-point two-loop amplitudes
e Several planar results for five partons and W + 4 partons

[Badger, Brgnnum-Hansen, Hartanto, T.P. (2017-2019)]
° aII—pIus five gluon non—planar [Badger, Chicherin, Gehrmann,
Heinrich, Henn, T.P., Wasser, Zhang, Zoia (2019)]

31

Example of graphs in FiniteFlow

Piecing together the all-plus five gluon amplitude (only planar contributions are shown)

ccccccccc

............

nnnnnnnnnn

rrrrrrr

32

Other notable applications of FiniteFlow

e Simplifying analytic expressions for NNLO QCD corrections to
three-photon production at the LHC

[Chawdhry, Czakon, Mitov, Poncelet (2019)]

e Analytic simplification of IBP systems
[Xin Guan, Xiao Liu, Yan-Qing Ma (2019)]

e Deriving canonical differential equations for Feynman integrals

from a single uniform weight integral
(INITIAL public code)

[Christoph Dlapa, Johannes Henn, Kai Yan (2020)]

33

Public codes

e FINITEFLOW
https://github.com/peraro/finiteflow

o C++ code
e MATHEMATICA interface (strongly recommended)

e FINITEFLOW MATHTOOLS
https://github.com/peraro/finiteflow-mathtools

e packages FFUTILS, LITEMOMENTUM, LITEIBP, SYMBOLS
e examples (amplitudes, IBPs, diff. equations and many more)

34

https://github.com/peraro/finiteflow
https://github.com/peraro/finiteflow-mathtools

Summary & Outlook

Summary

e Finite fields and functional reconstruction

e enhance the possibilities of our theoretical predictions
e new results unattainable with traditional computer algebra
e public code FINITEFLOW

e Progress on 2-loop 5-point and other complex processes

Outlook

e More applications

e massive processes, phase-space integrals, ...

e High level of automation for higher-loop predictions

85

