## Complex multi-loop results via finite-field techniques

Tiziano Peraro
Paris Winter Workshop: The Infrared in QFT - 3 March 2020


Based on:<br>T. P., JHEP 1612 (2016) 030, arXiv:1608.01902<br>T. P., JHEP 1907 (2019) 031, arXiv:1905.08019

## Introduction \& motivation

Experiments at LHC

- high-accuracy (\% level)
- large SM background
- high c.o.m. energy $\Rightarrow$ multi-particle states

We need scattering amplitudes

- high accuracy $\Rightarrow$ loops (\% level $\sim 2$ loops)
- multi-particle $\Rightarrow$ high multiplicity


Theoretical studies of amplitudes

- structures of QFT/gauge theories


## State of the art of scattering amplitudes

- Tree-level and one loop
- today, mostly numeric
- essentially solved
- automated
- Two and higher loops
- many calculations in recent years ...
- ... but still some open issues
- until recently, restricted to $2 \rightarrow 2$ processes
- beyond MPLs not well understood


## Two and higher loops

- Algebraic calculations for multi-loop amplitudes
- preferred strategy @ $\ell \geq 2$ loops
- faster/more stable evaluation
- better suited for many multi-loop techniques
- allows more tests, studies, etc... and better control
- often characterized by high complexity
- Complexity can be a combination of
- number of loops for high accuracy
- number of legs for high multiplicity
- numbers of scales (invariants, external/internal masses)


## Loop amplitudes

- An integrand contribution to $\ell$-loop amplitude

$$
\mathcal{A}=\int_{-\infty}^{\infty}\left(\prod_{i=1}^{\ell} d^{d} k_{i}\right) \frac{\mathcal{N}}{D_{1} D_{2} D_{3} \cdots}
$$

- rational function in the components of loop momenta $k_{j}$
- polynomial numerator $\mathcal{N}$
- quadratic denominators corresp. to loop propagators


$$
D_{j}=l_{j}^{2}-m_{j}^{2}
$$

## Computing amplitudes: Step 1/3

- Write amplitudes as I.c. of Feynman integrals

$$
\mathcal{A}=\sum_{j} a_{j} I_{j}
$$

- Dependence on particle-content in rational coeff.s $a_{j}$
- The integrals should have a "nice" / "standard" form

$$
I=\int_{-\infty}^{\infty}\left(\prod_{i=1}^{\ell} d^{d} k_{i}\right) \frac{1}{D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} D_{3}^{\alpha_{3}} \ldots}, \quad \alpha_{j} \lesseqgtr 0
$$



$$
D_{j}=\left\{\begin{array}{l}
l_{j}^{2}-m_{j}^{2} \\
l_{j} \cdot v_{j}-m_{j}^{2}
\end{array}\right.
$$

Hard to do at high multiplicity

## Computing amplitudes: Step 2/3

Chetyrkin, Tkachov (1981), Laporta (2000)

- Feynman integrals obey linear relations, e.g. IBPs

$$
\int\left(\prod_{j} d^{d} k_{j}\right) \frac{\partial}{\partial k_{j}^{\mu}} v^{\mu} \frac{1}{D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots}=0, \quad v^{\mu}= \begin{cases}p_{i}^{\mu} & \text { external } \\ k_{i}^{\mu} & \text { loop }\end{cases}
$$

- Very large and sparse linear systems
- Reduce to linearly independent Master Integrals (MIs)

$$
\begin{aligned}
& \left\{G_{1}, G_{2}, \ldots\right\} \subset\left\{I_{j}\right\} \\
& \\
& \\
& I_{j}=\sum_{k} c_{j k} G_{k}
\end{aligned}
$$

## Computing amplitudes: Step 3/3

- The MIs can often be computed analytically
- in terms of special functions (MPLs, elliptic, ...)
- most effective method is differential equations (DEs) Kotikov (1991), Gehrmann, Remiddi (2000)
- can be simplified by the choice of MIs, e.g. UT integrals Henn (2013)
- Numerical methods may work depending on the process
- the most successful is sector decomposition

Binoth, Heinrich (2000)

- can be improved via IBP reduction to a "better" basis of MIs


## Computing amplitudes

## Computing amplitudes (summary)

1. Integral representation $\mathcal{A}=\sum_{j} a_{j} I_{j}$
2. IBP reduction $I_{j}=\sum_{k} c_{j k} G_{k}$
3. Compute MIs $G_{k}$

A major bottleneck

- Large intermediate expressions
- Intermediate stages much more complicated than final result

Main idea of the talk

- Reconstruct analytic results from "numerical" evaluations
- Can be used for steps 1, 2 and help with step 3 (e.g. using DEs)


## Finite fields and functional reconstruction

## Functional reconstruction

- reconstruct analytic results from numerical evaluations
- evaluation over finite fields $\mathcal{Z}_{p}$ (i.e. modulo prime integers $p$ )
- use machine-size integers, $p<2^{64} \Rightarrow$ fast and exact
- collect numerical evaluations and infer analytic result
- sidesteps large intermediate expressions \& highly parallelizable
- applicable to any rational algorithm
- first applications
- IBPs and univ. reconstruction von Manteuffel, Schabinger (2014)
- helicity amplitudes and multivariate reconstruction T.P. (2016)


## Some notable examples

- FinRed (private) [von Manteuffel]
- several results for 4-loop form factors [von Manteuffel, Schabinger]
- FiniteFlow [T.P.]
- Several two-loop five-point amplitudes [Badger, Brønnum-Hansen, Hartanto, T.P.;
Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia]
- Matter dependence of the four-loop cusp anomalous dimension [Henn, T.P., Stahlhofen, Wasser]
- Caravel (private)
[Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]
- analytic five-parton amplitudes
- Fire 6 [A.V. Smirnov, F.S. Chuharev]
- Four-loop quark form factor with quartic fundamental colour factor [Lee, Smirnov, Smirnov, Steinhauser]


## The black-box interpolation problem

Given a rational function $f$ in the variables $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)$ over $\mathcal{Q}$

- Reconstruct analytic form of $f$, given a numerical procedure

$$
(\boldsymbol{z}, p) \longrightarrow \square f(\boldsymbol{z}) \bmod p
$$

- evaluate $f$ numerically for several $\boldsymbol{z}$ and $p$
- efficient multivariate reconstruction algorithms exist e.g. T.P. $(2016,2019)$, Klappert, Lange (2019)
- upgrade analytic $f$ over $\mathcal{Q}$ using rational reconstruction algorithm [Wang (1981)] and Chinese remainder theorem


## The black-box interpolation problem

Given a rational function $f$ in the variables $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)$ over $\mathcal{Q}$

- Reconstruct analytic form of $f$, given a numerical procedure

$$
(\boldsymbol{z}, p) \longrightarrow \square f(\boldsymbol{z}) \bmod p
$$

- evaluate $f$ numerically for several $\boldsymbol{z}$ and $p$
- efficient multivariate reconstruction algorithms exist e.g. T.P. $(2016,2019)$, Klappert, Lange (2019)
- upgrade analytic $f$ over $\mathcal{Q}$ using rational reconstruction algorithm [Wang (1981)] and Chinese remainder theorem


## Question in this talk

How to build the black box?

## Example: Scattering amplitudes over finite fields

T.P. (2016)

- External states (momenta and polarizations)
- rational parametrization with momentum twistors variables Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)
- Tree-level
- diagrams or recursion relations (e.g. Berends-Giele)
- Loop integrands
- Feynman diagrams and t'Hooft algebra
- Unitarity cuts sewing tree-level currents
- higher finite-dim. representation of internal states in dim. reg.
- Integrand reduction
- linear fit to a "nice" integrand basis


## How to build the black box?

How to build a code for fast numerical evaluations of finite fields?
We can consider a few options:

1. Low-level coding (e.g. in $\mathrm{C} / \mathrm{C}++/$ Fortran)?
$\checkmark$ very good runtime efficiency
$X$ harder to program
$X$ limits usability
2. Low-level coding + high-level interfaces?

- common algorithms in $\mathrm{C}++$ (e.g. linear solvers, fits, etc. .. )
- high-level wrapper (e.g. for Mathematica/Python)
$\checkmark$ good efficiency and usability
$x$ not flexible
$\boldsymbol{X}$ these algorithms are often intermediate steps


## How to build the black box?

Observations:

- A typical multi-loop algorithm involves several steps
- solving linear systems
- substitutions / changes of variables
- etc...
- Large simplifications often occur at the very last stages
- it's best to do everything numerically
- only the final expression reconstructed analytically
- Many algorithms share common "building blocks"


## FiniteFlow: using data flow graphs

FiniteFlow [T.P. (2019)] has three main components

1. "basic" algorithms in $\mathrm{C}++$ over finite fields

- dense/sparse linear solvers, linear fits, evaluating rat. functions, list manipulations, etc. .

2. higher-level framework to combine them into complex ones

- output of a basic algorithm is input of others
- graphical representation of your calculation (dataflow graphs)

3. multivariate reconstruction algorithms

## FiniteFlow

- build complex algorithms without any low-level programming (e.g. from Mathematica interface)
- many methods for amplitudes can be cast in this framework


## FiniteFlow: using data flow graphs

- FiniteFlow uses (simplified) data flow graphs
- Nodes represent numerical algorithms
- Arrows represent lists of numerical values
- In my implementation, a node has
- 0 or more lists (arrows) of input values
- 1 list (arrow) of output values



## Example of a graph



## Example: Evaluation of rational functions

- input: a list of values $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)$
- output: a list of rational functions $\left\{f_{1}, f_{2}, \ldots\right\}$ at $\boldsymbol{z}$

$$
f_{i}(\boldsymbol{z})=\frac{p_{i}(\boldsymbol{z})}{q_{i}(\boldsymbol{z})}=\frac{\sum_{\alpha} n_{i, \alpha} \boldsymbol{z}^{\alpha}}{\sum_{\beta} d_{i, \beta} \boldsymbol{z}^{\beta}},
$$



## Example: Matrix multiplication

- Two lists as input

1. entries of a matrix $A$
2. entries of a matrix $B$

- use row-major order to store them as a list
- ouput: entries of matrix $C$ such that

$$
C_{i j}=\sum_{k} A_{i k} B_{k j}
$$



## Example: Linear solver

- A $n \times m$ linear system with parametric rational entries

$$
\sum_{j=1}^{m} A_{i j} x_{j}=b_{i}, \quad(i=1, \ldots, n), \quad A_{i j}=A_{i j}(\boldsymbol{z}), \quad b_{i}=b_{i}(\boldsymbol{z})
$$

- input: list of values for paramers $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)$
- output: solution $c_{i j}=c_{i j}(\boldsymbol{z})$ such that

$$
x_{i}=\sum_{j \in \text { indep }} c_{i j} x_{j}+c_{i 0} \quad(i \notin \text { indep })
$$



## Learning algorithms

- Some algorithms have a learning phase
- used to learn information for defining its output
- must be completed before using them
- Example: linear solver
- learn: its rank, dep. and indep. unknowns, indep. eq.s
- learning phase: solve the system numerically a few times
- optional: mark \& sweep equations (sparse solver)
$\Rightarrow$ It can be used to simplify the algorithm
see also e.g. Kira: Maierhöfer, Usovitsch, Uwer (2017)


## IBP reduction

- IBPs are large and sparse linear systems
- they reduce Feynman integrals $I_{j}$ to a lin. indep. set of MIs $G_{j}$

$$
I_{i}=\sum_{j} c_{i j} G_{j}
$$

- amplitudes and other multi-loop objects can be reduced mod IBPs

$$
A=\sum_{j} a_{j} I_{j}=\sum_{j k} a_{j} c_{j k} G_{k}=\sum_{j} A_{j} G_{j}, \quad \text { with } A_{j}=\sum_{k} a_{k} c_{k j}
$$

- final results for $A_{k}$ often much simpler than $c_{i j}$
$\Rightarrow$ solve IBPs numerically and compute $A_{j}$ via a matrix multiplication


## IBP reduction



## Differential equations for Mls

- The MIs $G_{k}$ satisfy differential equations

Kotikov (1991), Gehrmann, Remiddi (2000)

$$
\partial_{x} G_{i}=\sum_{j} A_{i j}^{(x)} G_{j}
$$

- Identify MIs $G_{i}$ (e.g. by solving IBPs numerically)
- Compute their derivatives in terms of (non-master) loop integrals

$$
\partial_{x} G_{i}=\sum_{j} a_{i j}^{(x)} I_{j}
$$

- Reduce the needed integrals modulo IBPs: $I_{i}=\sum_{j} c_{i j} G_{j}$
- The final result is given by a matrix multiplication

$$
A_{i j}^{(x)}=\sum_{k} a_{i k}^{(x)} c_{k j}
$$

- Reconstruct $A_{i j}^{(x)}$ analytically from its numerical evaluations


## Differential equations for Mls



## Subgraphs

- Any graph $G_{1}$ can be used as a subgraph by an algorithm (a node) $A$ belonging to another graph $G_{2}$
- $A$ will evaluate $G_{1}$ several times to compute its output
- input of $G_{1}=$ auxiliary variables chained with inputs of $A$


## Examples:



- Laurent expansion
- maps: evaluate $G_{1}$ for several inputs
- partial reconstructions
- (total or partial) fits w.r.t. an ansatz


## Coefficients of the $\epsilon$-expansion

- If MIs are known analytically in terms of special functions $f_{k}$

$$
G_{j}=\sum_{k} g_{j k}(\epsilon, x) f_{k}+\mathcal{O}(\epsilon),
$$

we can compute

$$
A=\sum_{k} u_{k}(\epsilon, x) f_{k}+O(\epsilon), \quad \text { where } u_{k}(\epsilon, x)=\sum_{j} A_{j}(\epsilon, x) g_{j k}(\epsilon, x)
$$

- what we want is the $\epsilon$-expansion of the $u_{k}(\epsilon, x)$

$$
u_{k}(\epsilon, x)=\sum_{j=-p}^{0} u_{k}^{(j)}(x) \epsilon^{j}+\mathcal{O}(\epsilon)
$$

## Coefficients of the $\epsilon$-expansion



## Reconstruction of amplitudes

Observations:

- we can detect linear relations btw. the coefficients of the amplitude and reconstruct a simpler subset of linearly independent ones
- we can subtract IR divergencies predicted from lower orders by

$$
\mathcal{A}=\mathcal{Z} \mathcal{A}^{f}
$$

- this can also be used to subtract a finite contribution
- significantly simplifies result and reconstruction

Open question:

- Can we improve this subtraction of finite pieces?


## Cutting-edge applications of FiniteFlow

- Matter dependence of the 4-loop cusp anomalous dimension Henn, T.P., Stahlhofen, Wasser (2019)
(see also: Lee, Smirnov, Smirnov, Steinhauser (2019))



## Cutting-edge applications of FiniteFlow

- Five-point two-loop amplitudes
- Several planar results for five partons and $W+4$ partons
[Badger, Brønnum-Hansen, Hartanto, T.P. (2017-2019)]
- all-plus five gluon non-planar [Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia (2019)]



## Example of graphs in FiniteFlow

Piecing together the all-plus five gluon amplitude (only planar contributions are shown)


## Other notable applications of FiniteFlow

- Simplifying analytic expressions for NNLO QCD corrections to three-photon production at the LHC
[Chawdhry, Czakon, Mitov, Poncelet (2019)]
- Analytic simplification of IBP systems [Xin Guan, Xiao Liu, Yan-Qing Ma (2019)]
- Deriving canonical differential equations for Feynman integrals from a single uniform weight integral (INITIAL public code)
[Christoph Dlapa, Johannes Henn, Kai Yan (2020)]


## Public codes

- FiniteFlow
https://github.com/peraro/finiteflow
- C++ code
- Mathematica interface (strongly recommended)
- FiniteFlow MathTools
https://github.com/peraro/finiteflow-mathtools
- packages FFUtils, LiteMomentum, LiteIBP, Symbols
- examples (amplitudes, IBPs, diff. equations and many more)


## Summary \& Outlook

## Summary

- Finite fields and functional reconstruction
- enhance the possibilities of our theoretical predictions
- new results unattainable with traditional computer algebra
- public code FiniteFlow
- Progress on 2-loop 5-point and other complex processes


## Outlook

- More applications
- massive processes, phase-space integrals, ...
- High level of automation for higher-loop predictions

