
Complex multi-loop results

via finite-field techniques

Tiziano Peraro

Paris Winter Workshop: The Infrared in QFT – 3 March 2020

Based on:

T. P., JHEP 1612 (2016) 030, arXiv:1608.01902

T. P., JHEP 1907 (2019) 031, arXiv:1905.08019



Introduction & motivation

Experiments at LHC

• high-accuracy (% level)

• large SM background

• high c.o.m. energy ⇒ multi-particle states

We need scattering amplitudes

• high accuracy ⇒ loops (% level ∼ 2 loops)

• multi-particle ⇒ high multiplicity

Theoretical studies of amplitudes

• structures of QFT/gauge theories

1



State of the art of scattering amplitudes

• Tree-level and one loop

• today, mostly numeric

• essentially solved

• automated

• Two and higher loops

• many calculations in recent years . . .

• . . . but still some open issues

• until recently, restricted to 2→ 2 processes

• beyond MPLs not well understood

2



Two and higher loops

• Algebraic calculations for multi-loop amplitudes

• preferred strategy @ ` ≥ 2 loops

• faster/more stable evaluation

• better suited for many multi-loop techniques

• allows more tests, studies, etc. . . and better control

• often characterized by high complexity

• Complexity can be a combination of

• number of loops for high accuracy

• number of legs for high multiplicity

• numbers of scales (invariants, external/internal masses)

3



Loop amplitudes

• An integrand contribution to `-loop amplitude

A =

∫ ∞
−∞

(∏̀
i=1

ddki

)
N

D1D2D3 · · ·

• rational function in the components of loop momenta kj
• polynomial numerator N
• quadratic denominators corresp. to loop propagators

Dj = l2j −m2
j

4



Computing amplitudes: Step 1/3

• Write amplitudes as l.c. of Feynman integrals

A =
∑
j

ajIj

• Dependence on particle-content in rational coeff.s aj

• The integrals should have a “nice”/“standard” form

I =

∫ ∞
−∞

(∏̀
i=1

ddki

)
1

Dα1
1 Dα2

2 Dα3
3 · · ·

, αj Q 0

Dj =

{
l2j −m2

j

lj · vj −m2
j

Hard to do at

high multiplicity

5



Computing amplitudes: Step 2/3

Chetyrkin, Tkachov (1981), Laporta (2000)

• Feynman integrals obey linear relations, e.g. IBPs∫ (∏
j

ddkj

) ∂

∂kµj
vµ

1

Dα1
1 Dα2

2 · · ·
= 0, vµ =

{
pµi external

kµi loop

• Very large and sparse linear systems

• Reduce to linearly independent Master Integrals (MIs)

{G1, G2, . . .} ⊂ {Ij}

Ij =
∑
k

cjkGk

6



Computing amplitudes: Step 3/3

• The MIs can often be computed analytically

• in terms of special functions (MPLs, elliptic, . . . )

• most effective method is differential equations (DEs)

Kotikov (1991), Gehrmann, Remiddi (2000)

• can be simplified by the choice of MIs, e.g. UT integrals

Henn (2013)

• Numerical methods may work depending on the process

• the most successful is sector decomposition

Binoth, Heinrich (2000)

• can be improved via IBP reduction to a “better” basis of MIs

7



Computing amplitudes

Computing amplitudes (summary)

1. Integral representation A =
∑

j ajIj

2. IBP reduction Ij =
∑

k cjkGk

3. Compute MIs Gk

A major bottleneck

• Large intermediate expressions

• Intermediate stages much more complicated than final result

Main idea of the talk

• Reconstruct analytic results from “numerical” evaluations

• Can be used for steps 1, 2 and help with step 3 (e.g. using DEs)

8



Finite fields and functional reconstruction

Functional reconstruction

• reconstruct analytic results from numerical evaluations

• evaluation over finite fields Zp (i.e. modulo prime integers p)

• use machine-size integers, p < 264 ⇒ fast and exact

• collect numerical evaluations and infer analytic result

• sidesteps large intermediate expressions & highly parallelizable

• applicable to any rational algorithm

• first applications

• IBPs and univ. reconstruction von Manteuffel, Schabinger (2014)

• helicity amplitudes and multivariate reconstruction T.P. (2016)

9



Some notable examples

• FinRed (private) [von Manteuffel]

• several results for 4-loop form factors [von Manteuffel, Schabinger]

• FiniteFlow [T.P.]

• Several two-loop five-point amplitudes
[Badger, Brønnum-Hansen, Hartanto, T.P.;

Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia]

• Matter dependence of the four-loop cusp anomalous dimension

[Henn, T.P., Stahlhofen, Wasser]

• Caravel (private)
[Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]

• analytic five-parton amplitudes

• Fire 6 [A.V. Smirnov, F.S. Chuharev]

• Four-loop quark form factor with quartic fundamental colour

factor [Lee, Smirnov, Smirnov, Steinhauser]

10



The black-box interpolation problem

Given a rational function f in the variables z = (z1, . . . , zn) over Q

• Reconstruct analytic form of f , given a numerical procedure

(z, p) −→ f −→ f(z) mod p.

• evaluate f numerically for several z and p

• efficient multivariate reconstruction algorithms exist

e.g. T.P. (2016,2019), Klappert, Lange (2019)

• upgrade analytic f over Q using rational reconstruction algorithm

[Wang (1981)] and Chinese remainder theorem

Question in this talk

How to build the black box?

11



The black-box interpolation problem

Given a rational function f in the variables z = (z1, . . . , zn) over Q

• Reconstruct analytic form of f , given a numerical procedure

(z, p) −→ f −→ f(z) mod p.

• evaluate f numerically for several z and p

• efficient multivariate reconstruction algorithms exist

e.g. T.P. (2016,2019), Klappert, Lange (2019)

• upgrade analytic f over Q using rational reconstruction algorithm

[Wang (1981)] and Chinese remainder theorem

Question in this talk

How to build the black box?

11



Example: Scattering amplitudes over finite fields

T.P. (2016)

• External states (momenta and polarizations)

• rational parametrization with momentum twistors variables

Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

• Tree-level

• diagrams or recursion relations (e.g. Berends-Giele)

• Loop integrands

• Feynman diagrams and t’Hooft algebra

• Unitarity cuts sewing tree-level currents

• higher finite-dim. representation of internal states in dim. reg.

• Integrand reduction

• linear fit to a “nice” integrand basis

12



How to build the black box?

How to build a code for fast numerical evaluations of finite fields?

We can consider a few options:

1. Low-level coding (e.g. in C/C++/Fortran)?

3 very good runtime efficiency

7 harder to program

7 limits usability

2. Low-level coding + high-level interfaces?

• common algorithms in C++ (e.g. linear solvers, fits, etc. . . )

• high-level wrapper (e.g. for Mathematica/Python)

3 good efficiency and usability

7 not flexible

7 these algorithms are often intermediate steps

13



How to build the black box?

Observations:

• A typical multi-loop algorithm involves several steps

• solving linear systems

• substitutions / changes of variables

• etc. . .

• Large simplifications often occur at the very last stages

• it’s best to do everything numerically

• only the final expression reconstructed analytically

• Many algorithms share common “building blocks”

14



FiniteFlow: using data flow graphs

FiniteFlow [T.P. (2019)] has three main components

1. “basic” algorithms in C++ over finite fields

• dense/sparse linear solvers, linear fits, evaluating rat.

functions, list manipulations, etc. . .

2. higher-level framework to combine them into complex ones

• output of a basic algorithm is input of others

• graphical representation of your calculation (dataflow graphs)

3. multivariate reconstruction algorithms

FiniteFlow

• build complex algorithms without any low-level programming

(e.g. from Mathematica interface)

• many methods for amplitudes can be cast in this framework

15



FiniteFlow: using data flow graphs

• FiniteFlow uses (simplified) data flow graphs

• Nodes represent numerical algorithms

• Arrows represent lists of numerical values

• In my implementation, a node has

• 0 or more lists (arrows) of input values

• 1 list (arrow) of output values

16



Example of a graph

17



Example: Evaluation of rational functions

• input: a list of values z = (z1, . . . , zn)

• output: a list of rational functions {f1, f2, . . .} at z

fi(z) =
pi(z)

qi(z)
=

∑
α ni,α z

α∑
β di,β z

β
,

18



Example: Matrix multiplication

• Two lists as input

1. entries of a matrix A

2. entries of a matrix B

• use row-major order to store them as a list

• ouput: entries of matrix C such that

Cij =
∑
k

Aik Bkj

19



Example: Linear solver

• A n×m linear system with parametric rational entries

m∑
j=1

Aij xj = bi, (i = 1, . . . , n), Aij = Aij(z), bi = bi(z)

• input: list of values for paramers z = (z1, . . . , zn)

• output: solution cij = cij(z) such that

xi =
∑

j∈indep

cij xj + ci0 (i 6∈ indep)

20



Learning algorithms

• Some algorithms have a learning phase

• used to learn information for defining its output

• must be completed before using them

• Example: linear solver

• learn: its rank, dep. and indep. unknowns, indep. eq.s

• learning phase: solve the system numerically a few times

• optional: mark & sweep equations (sparse solver)

⇒ It can be used to simplify the algorithm

see also e.g. Kira: Maierhöfer, Usovitsch, Uwer (2017)

21



IBP reduction

• IBPs are large and sparse linear systems

• they reduce Feynman integrals Ij to a lin. indep. set of MIs Gj

Ii =
∑
j

cij Gj

• amplitudes and other multi-loop objects can be reduced mod IBPs

A =
∑
j

aj Ij =
∑
jk

aj cjkGk =
∑
j

Aj Gj , with Aj =
∑
k

ak ckj

• final results for Ak often much simpler than cij

⇒ solve IBPs numerically and compute Aj via a matrix multiplication

22



IBP reduction

23



Differential equations for MIs

• The MIs Gk satisfy differential equations

Kotikov (1991), Gehrmann, Remiddi (2000)

∂xGi =
∑
j

A
(x)
ij Gj

• Identify MIs Gi (e.g. by solving IBPs numerically)

• Compute their derivatives in terms of (non-master) loop integrals

∂xGi =
∑
j

a
(x)
ij Ij

• Reduce the needed integrals modulo IBPs: Ii =
∑
j cij Gj

• The final result is given by a matrix multiplication

A
(x)
ij =

∑
k

a
(x)
ik ckj

• Reconstruct A
(x)
ij analytically from its numerical evaluations

24



Differential equations for MIs

25



Subgraphs

• Any graph G1 can be used as a subgraph by an algorithm (a node)

A belonging to another graph G2

• A will evaluate G1 several times to compute its output

• input of G1 = auxiliary variables chained with inputs of A

Examples:

• Laurent expansion

• maps: evaluate G1

for several inputs

• partial reconstructions

• (total or partial) fits

w.r.t. an ansatz

26



Coefficients of the ε-expansion

• If MIs are known analytically in terms of special functions fk

Gj =
∑
k

gjk(ε, x) fk +O(ε),

we can compute

A =
∑
k

uk(ε, x) fk+O(ε), where uk(ε, x) =
∑
j

Aj(ε, x) gjk(ε, x)

• what we want is the ε-expansion of the uk(ε, x)

uk(ε, x) =

0∑
j=−p

u
(j)
k (x) εj +O(ε),

27



Coefficients of the ε-expansion

28



Reconstruction of amplitudes

Observations:

• we can detect linear relations btw. the coefficients of the amplitude

and reconstruct a simpler subset of linearly independent ones

• we can subtract IR divergencies predicted from lower orders by

A = Z Af

• this can also be used to subtract a finite contribution

• significantly simplifies result and reconstruction

Open question:

• Can we improve this subtraction of finite pieces?

29



Cutting-edge applications of FiniteFlow

• Matter dependence of the 4-loop cusp anomalous dimension
Henn, T.P., Stahlhofen, Wasser (2019)

(see also: Lee, Smirnov, Smirnov, Steinhauser (2019))

30



Cutting-edge applications of FiniteFlow

• Five-point two-loop amplitudes
• Several planar results for five partons and W + 4 partons

[Badger, Brønnum-Hansen, Hartanto, T.P. (2017-2019)]

• all-plus five gluon non-planar [Badger, Chicherin, Gehrmann,

Heinrich, Henn, T.P., Wasser, Zhang, Zoia (2019)]

31



Example of graphs in FiniteFlow

Piecing together the all-plus five gluon amplitude (only planar contributions are shown)

in

pt

sijepsibpin

sijepsdimless

ibps intgr

red

normred

32



Other notable applications of FiniteFlow

• Simplifying analytic expressions for NNLO QCD corrections to
three-photon production at the LHC

[Chawdhry, Czakon, Mitov, Poncelet (2019)]

• Analytic simplification of IBP systems

[Xin Guan, Xiao Liu, Yan-Qing Ma (2019)]

• Deriving canonical differential equations for Feynman integrals

from a single uniform weight integral
(INITIAL public code)

[Christoph Dlapa, Johannes Henn, Kai Yan (2020)]

33



Public codes

• FiniteFlow

https://github.com/peraro/finiteflow

• C++ code

• Mathematica interface (strongly recommended)

• FiniteFlow MathTools

https://github.com/peraro/finiteflow-mathtools

• packages FFUtils, LiteMomentum, LiteIBP, Symbols

• examples (amplitudes, IBPs, diff. equations and many more)

34

https://github.com/peraro/finiteflow
https://github.com/peraro/finiteflow-mathtools


Summary & Outlook

Summary

• Finite fields and functional reconstruction

• enhance the possibilities of our theoretical predictions

• new results unattainable with traditional computer algebra

• public code FiniteFlow

• Progress on 2-loop 5-point and other complex processes

Outlook

• More applications

• massive processes, phase-space integrals, . . .

• High level of automation for higher-loop predictions

35


