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Expanding a given Feynman integral in a given limit, where
kinematic invariants and/or masses which essentially differ in
scale.

Let us, first, keep in mind an integral Gr(q?, m?) depending on
two scales, e.g., g?> and m?, and let the limit be

t=-m?/q* = 0.

Experience tells us that the expansion at t — 0 has the form

[ee]

Gr(x ZZC,,k Iog tt",

n=ng k=0

where h is the number of loops and € = (4 — d)/2.
The expansion is often called asymptotic, i.e. the remainder of
expansion after keeping terms up to t" is o(tV).
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It is very useful to consider expansion at general ¢

ZZZC,,M ) logk t t7 7=

n=ng k=0 j=0

There are various methods to obtain an expansion of a given
Feynman integral, e.g., using a MB-representation.

There are, however, two general strategies, expansion by
subgraphs and expansion by regions, which provide a result in
this form for any given Feynman integral, where coefficients
are expressed either in graph-theoretical language, or in the
language of polytopes associated with a given integral.
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Expansion by regions
introduced and applied in the case of threshold expansion.
Expanding a given Feynman integral in a given limit.
In the ‘physical’ language:
m Divide the space of the loop momenta into various regions

and, in every region, expand the integrand in a series with
respect to the parameters that are considered there small.

m Integrate the integrand, expanded in this way in each
region, over the whole integration domain of the loop
momenta.

m Set to zero any scaleless integral.
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A simple example

dk

G(q2’m2;d):/(kz—m2)2(q—k)2

with d = 4 — 2¢ in the limit m?/q?> — 0.
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Two relevant regions: k ~ g and k ~ m
(large and small loop momenta)

k ~ q: 1 1 n
(k2 —m2)? (k22
1
W Unexpanded
k ~ m:
m ﬁ unexpanded
—m
1 1
~— 4+ ...

(9—k)? ¢



G(q27 m2; d) N / (kz) o |

+ _/ "D
20— k)2 @] (k= m?)?

Do
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[M. Beneke '98, V.S. ‘Applied asymptotic expansions in
momenta and masses’, 2002]:

a toy example of a one-parametric integral
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with m, g > 0, in the limit m/q — 0.
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Two relevant regions: k ~ g and k ~ m

k ~ q: 1

11
k+m k

1
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Two relevant regions: k ~ g and k ~ m

k ~ q: 1 1
k+m k
! ded
——— unexpande
k+q P
k ~
™ m unexpanded
1 1
k+q gq

Ook—l—e 1 o) k—a
G(g,m,e) ~ dk+—/
(4, m.<) /0 kta"  q)o k+m

dk + ...



A
G—>GS+G/E/ /(q,m,e,k)kor/
0 A

where m < A < g.

0

I(q> m, e, k)dk

Hac
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(o)
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0 A
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(o)

A
G—>G5+G/E/ l(q,m,e,k)dk+/ I(q, m, e, k)dk
0 A

where m < A < g.

00 k=< o e 1
G = dk ~ - dk
! /A (k+m)(k + q) A k+qu+m

where T.f(x) = Yooy Lf(Mx", so that

n=0 n

G “ k= (1 m N
" ktq\k kR
Here one can change the order of integration and Taylor
expansion.



Expansion by regions

I—Expansion by regions in the physical language

Add and subtract the integral over (0, A) which is by definition
understood as the sum of integrals of the Taylor-expanded
integrand:

> k¢ 1 NokE 1
G ~ To—r dk— / T dk
: /0 k+q "k+m o k+qg "k+m
where each integral is evaluated in the corresponding domain

of € where it is convergent and then the result it continued
analytically to a given domain, i.e. a vicinity of ¢ = 0.
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Add and subtract the integral over (0, A) which is by definition
understood as the sum of integrals of the Taylor-expanded
integrand:

> k¢ 1 NokE 1
Gy ~ Tn dk—/ Tn dk
: /0 k+q "k+m o k+q "k+m
where each integral is evaluated in the corresponding domain
of € where it is convergent and then the result it continued

analytically to a given domain, i.e. a vicinity of ¢ = 0.
Similarly,

R 1 R 1
G, ~ T dk—/ Ti——dk
/0 k+m kk+q A k+m kk+q
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‘Additional’ pieces:

/\k—a 1 /\k—e—n—l
_ T dk = — —1)"m" dk
/ok+q i )’"/o ki q

n=0

A
— Z n+I n —I 1/ k—e—t-1dk
0

n, /=0
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‘Additional’ pieces:

/\k—a 1 S /\k—e—n—l
— Tm dk = — —1)"m" dk
/ok+q rrmik =2 )’"/o P

n=0

A
— Z n+I n —I 1/ k—e—t-1dk
0

n, /=0

00 f—¢ 1 B > L o) k/—a
/,\ k+m77(k+qdk_ IX_;( 1)d /,\ k—l—mdk

_ Z(_l)n-i-lmnq—l—l/ ke ntI=1qk
A

n,/I=0



The additional pieces cancel each other because
A

/ k—e—n+l—1dk — A—e—n+l /
0

ke~ n—+I1— ldk

ANE~ n+/
A
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The additional pieces cancel each other because

/A k—a—n-l—l—ldk — /\—a—n—i-l /OO k—a—n—i—l—ldk — _/\—a—n—i-l
0 A

We did not refer to the zero value of scaleless integrals

/ k*k = 0.
0
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We arrive at the expansion G ~ My G + M, G with

o0 kg
MG = / k+gq k+mdk’
ke 1
M2G:/0 k+m7-kk+qdk'

Each resulting integral is evaluated in the corresponding
domain of £ where it is convergent, with a subsequent analytic
continuation to the initial domain, i.e. a vicinity of ¢ = 0.

The remainder can be described as

R"G = (1— MI)(1 — MD)G
:/Oook {(1—7”),( 1m] {(1—7;")kiq} dk
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Obtaining expansion from the remainder in a ‘physical way’
1=1-R"+R"=1—-(1-M[)(1—M3)+R"
where
1—(1—M)(1—-My))= M+ M) — MM,
Set scaleless integrals in M{MJ to zero to obtain

G~ MIG+M;G+R"G
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way. Let M =3 7 oM for i=1,2. Then
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Jj=0 Jj=0

Let Res < 0.
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Obtaining expansion from the remainder in a mathematical
way. Let M =3 7 oM for i=1,2. Then

My + My — MEME =S (1 = MYMYD + 37 (1 - MM

Jj=0 Jj=0

Let Rec < 0. Then

& : 1 ) 1
—€ iy~ (J -
[ mt | e

VES . . 1
~m | k(1= T ——
/0 {( 7 )k + q}



/oo k—e—j—l [(1 B 77(1__1 )
0

m]

<o

B> <=

Q>
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k—E—_/—l 1— j—1 }
/ -7

is nothing but the analytic continuation of the integral

o : 1
k—a—j—l
/0 k+gq

from0 < —Res < 1toj < —Ree < j+1.
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k—E—_/—l 1— j—1 }
/ -7

is nothing but the analytic continuation of the integral

o : 1
k—a—j—l
/0 k+gq

from0 < —Res < 1toj < —Ree < j+1.

Like in the case of the analytic continuation of the distribution
x2 from Re\ > —1 to the whole complex plane
, i.e. for integrals

/0 T o(x)dx
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then expanding the integrand and then extending integration
and analyzing all the pieces which are obtained.
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Jantzen provided detailed explanations, using
one- and two-loop examples, of how this strategy works by
starting from regions determined by some inequalities and
covering the whole integration space of the loop momenta,
then expanding the integrand and then extending integration
and analyzing all the pieces which are obtained.

An indirect proof of expansion by regions for limits
typical of Euclidean space (where one has two different regions
which can be called large and small).

Expansion by subgraphs :
for example, in the off-shell large-momentum limit, i.e. where

a momentum Q@ is considered large and momenta g; as well as
the masses m; are small,

Gr ~ Z Gr/y © Tgy.m, Gy
.
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How to find relevant regions?

For limits typical of Euclidean space, these are regions of large
(hard) and small (soft) momenta.

For the Regge limit and various versions of the Sudakov limit,
these are hard, soft, 1-collinear, ..., ultrasoft regions.

For the threshold limit y = m?* — q?/4 — 0, one has

(hard),
(soft),
(potential)
)

?

(ultrasoft),

where g = (qo, 0).

ko”ﬁa EN\/?>

ko ~\y, EN\/)77
koNY/\/?a EN\/}_U
koNY/\/?a EN)//\/?-



Expansion by regions in Feynman parameters [\/.5.'99], also
formulated in the physical language.
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Expansion by regions in Feynman parameters , also
formulated in the physical language.
Feynman parametric representation for a Feynman integral

with propagators 1/(—p® + m? — i0)
/ / ZX’ _ 1) yr—(h1)d/2 phdf2=ng, g

where n is the number of lines (edges), h is the number of
loops (independent circuits) of the graph,

F=-V+U> mix,
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Expansion by regions in Feynman parameters , also
formulated in the physical language.

Feynman parametric representation for a Feynman integral
with propagators 1/(—p*+ m? — i0)

/ / ZX’ _ 1) yr—(h1)d/2 phdf2=ng, g

where n is the number of lines (edges), h is the number of
loops (independent circuits) of the graph,

F=-V+U> mix,

and U and V are two basic functions
(Symanzik polynomials, or graph polynomials).
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which depends on external momenta g; and masses and is a
scalar function of kinematic invariants and squares of masses,
s;, and assume that each s; has certain scaling p"i where p is a
small parameter.
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I—Expansion by regions in Feynman parameters

One can consider quite general limits for a Feynman integral
which depends on external momenta g; and masses and is a
scalar function of kinematic invariants and squares of masses,
s;, and assume that each s; has certain scaling p"i where p is a
small parameter.

A region — scaling, i.e. x; — p"ix; where p is a small
parameter connected with a given limit.
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A systematical procedure to find regions based on geometry of
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which is now included in the code
FIESTA

Using this code one can not only find relevant regions but also
evaluate numerically coefficients at powers and logarithms of
the given expansion parameter.
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I—Expansion by regions in Feynman parameters

A systematical procedure to find regions based on geometry of
polytopes and implemented as a public computer code asy.m

which is now included in the code
FIESTA

Using this code one can not only find relevant regions but also
evaluate numerically coefficients at powers and logarithms of
the given expansion parameter.

Numerous applications have shown that the code asy.m works
consistently even in cases where the function F is not positive
— see, e.g.
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the function F are negative

Potential and Glauber regions.
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Generalizations of this procedure to some cases where terms of
the function F are negative

Potential and Glauber regions.
An example: one-loop diagram with two massive lines in the
threshold limit y = m®> — ¢?/4 — 0
F(¢%,y) = im"?T(e)
/ / (a1 + @2)*72 6 (ag + ap — 1) dagdas
P (a1 — a2)? + y(an + az)? — 0]

The code asy.m in its first version revealed only the
contribution of the hard region, i.e. a;j ~ y°.



contributions.

Decompose integration over a; < a; and ap < «p, with equal
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Decompose integration over a; < a; and ap < «p, with equal
contributions.

In the first domain, turn to new variables by
a; = a4 /2, ap = ob + ) /2 and arrive at

I'7rd/2 / / (o1 + 042 12725 (a1 + ap — 1) dagdas
062 + y(oq + Oéz) — IO]
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Decompose integration over a; < a; and ap < «p, with equal
contributions.

In the first domain, turn to new variables by
a; = a4 /2, ap = ob + ) /2 and arrive at
d/2 / / 041 + 062 28_2 ) (061 + ap — 1) dOéldOéz
- )
Oé + y(oq + Oéz) — IO]

Two regions: (0,0) and (0,1/2).
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Decompose integration over a; < a; and ap < «p, with equal
contributions.

In the first domain, turn to new variables by
a; = a4 /2, ap = ob + ) /2 and arrive at
d/2 / / 041 + 062 28_2 ) (061 + ap — 1) dOéldOéz
- )
Oé + y(oq + Oéz) — IO]

Two regions: (0,0) and (0,1/2). The second one, with
ay ~ y% ap ~ |y gives

. r o d
jrd/2 (5)/ 2 o2 _
2o (Feity)




[T. Semenova, A. Smirnov & V.S."19]:

Let us use the parametric representation of Lee and
Pomeransky [R.N. Lee and A A. Pomeransky'13]
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Let us use the parametric representation of Lee and
Pomeransky

G(t,e):/ / P~%dx; ...dx, ,
0 0

where § =d/2=2—-cand P= U+ F.
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Let us use the parametric representation of Lee and
Pomeransky

G(t,e):/ / P~%dx; ...dx, ,
0 0

where 6 =d/2=2—cand P= U+ F.

Feynman parametric representation can be obtained from it by
inserting 1 = [6(>_, x; — n)dn, scaling x — nx and
integrating over 7).
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I—Expansion by regions in Feynman parameters

Let t be the small parameter, e.g. —m?/q? for the Sudakov
limit or (p1 + p3)?/(p1 + p2)? for the Regge limit.

Let P be a polynomial with positive coefficients,

W1 w; w,
P(x1,...,Xp, t) = E CuX{™ Xt

where S is a finite set of points w = (wy, ..., Wpi1).

The Newton polytope Np of P is the convex hull of the set S
in the n + 1-dimensional Euclidean space R™! equipped with

1
the scalar product v - w = 377 v;w;.

A facet of P is a face of maximal dimension, i.e. n.
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I—Expansion by regions in the mathematical language

The main conjecture.
The asymptotic expansion of

G(t,e):/ / P~%dx; ...dx, ,
0 0

in the limit t — +0 is given by
G(t,e) ~ Z/ / [Mw (P(x1, - %n, £)) | dxy ... dxy |
—Jo 0

where the sum runs over facets of the Newton polytope ANp of
P, for which the normal vectors r* = (r/,...,r),r) ),
oriented inside the polytope have r, , > 0.
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The main conjecture.
The asymptotic expansion of

G(t,e):/ / P~%dx; ...dx, ,
0 0

in the limit t — 40 is given by

G(t,e)NZ/OOO.../OOO (M, (PGa. -0 1) ] d iy,

where the sum runs over facets of the Newton polytope ANp of
P, for which the normal vectors r* = (r/,...,r),r) ),
oriented inside the polytope have r, , > 0.

Let us call these facets essential.

Let us normalize these vectors by r,,; = 1.
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The contribution of a given essential facet is defined by the
change of variables x; — t7 x; in the integral and expanding
the resulting integrand in powers of t.
This leads to the following definitions.

For a given essential facet ~, let us define the polynomial

ry ry Wa pw-r?Y
PY(x1,.. ., %o, t) = P(t xq, ..., t" xp, t) g CuX{ ™t xpt

The scalar product w - r? is proportional to the projection of
the point w on the vector r?. For w € S, it takes a minimal
value for all the points belonging to the considered facet

w € SN~. Let us denote it by L(7).



The polynomial P7 can be represented as
tL(FY) (Pg(xla s ,X,,) + P’17(x1)

cey Xy B))
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I—Expansion by regions in the mathematical language

The polynomial P7 can be represented as

L) (Py(x1,---yxa) + Pl (X1, X, t))

where
2 _ w1 w,
Py(x1,.. ., xp) = g Cux{t X
weSNy
Y _ wy Wn gw-r? —L
P! (x1,..., X t) = g CwX{t . oxpt o)
weS\y

The polynomial P; is independent of t while P’ can be
represented as a linear combination of positive rational powers
of t with coefficients which are polynomials of x.
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I—Expansion by regions in the mathematical language

For a given facet +, the operator M, acts on the integrand as
follows

M, (P(x1, .-\ %, £))°
= 2 LT (P (o Xe) + PR, s Xy )
= 2P (P (kg xa))
where 7; performs an asymptotic expansion in powers of t at
t=0.

In particular, the LO term of a given facet

QLI / .. / (PJ(x,--- ,x,,))_‘S dx;...dx, .
0 0
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An example:

G(t,e) = / s 1
0

in the limit t — 0.

P(X7 t) = Z(W1;W2)GS C(WI,WZ)XWI th

«O> (Fr «=

Q>
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An example:

in the limit t — 0.

P(x,t) = Z(WLWZ)GS Clwa,wa) X "1 "2

The Newton polytope (triangle)

w2

V2

w1

7
Two essential facets v; and 7, with the corresponding normal

vectors 1 = (0,1) and r, = (1,1).



~v1 — expanding the integrand in t. LO is given by

/ (x> + x)* tdx =
0

M(1—2e)l(e)
r1—e)

DA
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~v1 — expanding the integrand in t. LO is given by

< e—1 _r(1—25)r(5)
/O(X + x) dx_—l_(l—e)

72 — t times the integral of the integrand with x — tx
expanded in powers of t. LO is given by
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ta/ (x+ 1) Mdx= =
0
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~v1 — expanding the integrand in t. LO is given by

< e—1 _r(1—25)r(5)
/O(X + x) dx_—l_(l—e)

72 — t times the integral of the integrand with x — tx
expanded in powers of t. LO is given by

o0 tE
ta/ (x+ 1) ldx = — &
0

3

The sum of the contributions in the LO:

G(t,e) ~ —logt+ O(¢)



Another example

in the limit mz/qz o

(O B <=»
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Another example

in the limit m?/g®> — 0.

G(t,{f) = / (P(Xl,Xz, t))s_ledxldX2
0

«0O)>» «F)»r « =
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Another example

in the limit m?/g®> — 0.
G(t, 6) = / (P(Xl,Xz, t))e_ledxldxz
0

where

P=U+F= >  cxg?t™,

w=(wy,w2,w3)ES
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Another example

in the limit m?/g®> — 0.
G(t, 6) = / (P(Xl,X2, t))6_2X1dX1dX2
0

where

P=U+F= >  cxg?t™,

w=(wy,w2,w3)ES

l‘::Xl(t(Xl—|—X2)—|—X2)7 U:X1—|—X2
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The vertices A, B, C, D, E of the Newton polytope coincide
with the set S

F=x(tlxx +x)+x), U=x+x;

A(2,0,1), B(1,1,1), C(1,1,0), D(1,0,0), (0, 1,0).
3

B

— Wh

A
£
D C
1 Two essential facets:

CDE € the plane w; = 0, with the normal vector (0,0,1) —
expansion in t.

ACD € the plane w; — ws = 1, with the normal vector
(~1,0,1)

— t_z fooo X1 [Xl/t + Xo + (Xl/t)(t(Xl/t + X2)]6_2 =...
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A typical feature of results obtained within expansion by
regions (or, subgraphs) is the appearance of poles in § or € on
the right-hand side: usually, they are infrared and ultraviolet
but they can be also collinear.

The cancellation of these poles is a very natural check of the
expansion procedure, i.e. the pole part of the sum of terms of
the expansion should be equal to the pole part of the initial
integral.
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Complications.

1. The contribution of each essential facet to the expansion is
evaluated in the corresponding domain of ¢ where it is
convergent and then the result it continued analytically to a
desired domain. Maybe, it will be natural to proceed with
subtraction operators.

2. One has to distinguish situations where contributions of
individual facets are not regularized by the initial regularization
parameter §. A natural way to proceed is to introduce
auxiliary analytic regularization by inserting powers x,.’\".

For Feynman integrals at Euclidean external momenta, Speer
proved that the corresponding dimensionally and analytically
regularized parametric integral is convergent in a non-empty
domain of parameters (g, A1,. .., \,).

A generalization of Speer’s theorem to the case of LP
representation
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Advantages of the new formulation.

1. The degree of P = U + F is less than the degree of UF.
Therefore, the current version of asy is much more powerful.
Equivalence of expansion by regions for Feynman integrals
based on the standard Feynman parametric representation and
the LP representation (implemented in FIESTA) was proven

2. The new formulation has more chances to be proven.
A proof in a special case



The leading contribution of a given essential facet.
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I—Expansion by regions in the mathematical language

The leading contribution of a given essential facet.

If the point (%, ce %) € R" is inside 7(I") for some facet I'
then the leading asymptotics is given by

-5
t_L(l—)tH-Z,'f,'r / .. / ( Z CWylwl .. yr';""> dy1 R dy,,
0 0

welns

when t — +0.



m Expansion by regions is a very important strategy
successfully applied in numerous calculations.
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I—Summary

Expansion by regions is a very important strategy
successfully applied in numerous calculations.

The Lee—Pomeransky representation looks very natural to
be used in proving expansion by regions.

For the moment, expansion by regions still has the status
of experimental mathematics. Hopefully, it will be
mathematically justified.

Divide et impera
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