
Expansion by regions

Expansion by regions

Vladimir A. Smirnov

Skobeltsyn Institute of Nulear Physis of Mosow State University

Paris, Marh 2-7, 2020



Expansion by regions

Expansion by regions in the physial language

Expanding a given Feynman integral in a given limit, where

kinemati invariants and/or masses whih essentially di�er in

sale.



Expansion by regions

Expansion by regions in the physial language

Expanding a given Feynman integral in a given limit, where

kinemati invariants and/or masses whih essentially di�er in

sale.

Let us, �rst, keep in mind an integral GΓ(q
2,m2) depending on

two sales, e.g., q

2

and m

2

, and let the limit be

t = −m2/q2 → 0.



Expansion by regions

Expansion by regions in the physial language

Expanding a given Feynman integral in a given limit, where

kinemati invariants and/or masses whih essentially di�er in

sale.

Let us, �rst, keep in mind an integral GΓ(q
2,m2) depending on

two sales, e.g., q

2

and m

2

, and let the limit be

t = −m2/q2 → 0.

Experiene tells us that the expansion at t → 0 has the form

GΓ(x , ε) ∼
∞
∑

n=n

0

2h

∑

k=0



n,k(ε) log
k

t t

n,



Expansion by regions

Expansion by regions in the physial language

Expanding a given Feynman integral in a given limit, where

kinemati invariants and/or masses whih essentially di�er in

sale.

Let us, �rst, keep in mind an integral GΓ(q
2,m2) depending on

two sales, e.g., q

2

and m

2

, and let the limit be

t = −m2/q2 → 0.

Experiene tells us that the expansion at t → 0 has the form

GΓ(x , ε) ∼
∞
∑

n=n

0

2h

∑

k=0



n,k(ε) log
k

t t

n,

where h is the number of loops and ε = (4− d)/2.



Expansion by regions

Expansion by regions in the physial language

Expanding a given Feynman integral in a given limit, where

kinemati invariants and/or masses whih essentially di�er in

sale.

Let us, �rst, keep in mind an integral GΓ(q
2,m2) depending on

two sales, e.g., q

2

and m

2

, and let the limit be

t = −m2/q2 → 0.

Experiene tells us that the expansion at t → 0 has the form

GΓ(x , ε) ∼
∞
∑

n=n

0

2h

∑

k=0



n,k(ε) log
k

t t

n,

where h is the number of loops and ε = (4− d)/2.
The expansion is often alled asymptoti, i.e. the remainder of

expansion after keeping terms up to t

N

is o(tN).



Expansion by regions

Expansion by regions in the physial language

It is very useful to onsider expansion at general ε,

GΓ(x , ε) ∼
∞
∑

n=n

0

h

∑

k=0

h

∑

j=0



′
n,j ,k(ε) log

k

t t

n−jε .



Expansion by regions

Expansion by regions in the physial language

It is very useful to onsider expansion at general ε,

GΓ(x , ε) ∼
∞
∑

n=n

0

h

∑

k=0

h

∑

j=0



′
n,j ,k(ε) log

k

t t

n−jε .

There are various methods to obtain an expansion of a given

Feynman integral, e.g., using a MB-representation.



Expansion by regions

Expansion by regions in the physial language

It is very useful to onsider expansion at general ε,

GΓ(x , ε) ∼
∞
∑

n=n

0

h

∑

k=0

h

∑

j=0



′
n,j ,k(ε) log

k
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There are various methods to obtain an expansion of a given

Feynman integral, e.g., using a MB-representation.

There are, however, two general strategies, expansion by

subgraphs and expansion by regions, whih provide a result in

this form for any given Feynman integral, where oe�ients

are expressed either in graph-theoretial language, or in the

language of polytopes assoiated with a given integral.
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introdued and applied in the ase of threshold expansion.

Expanding a given Feynman integral in a given limit.

In the `physial' language:

Divide the spae of the loop momenta into various regions

and, in every region, expand the integrand in a series with

respet to the parameters that are onsidered there small.

Integrate the integrand, expanded in this way in eah

region, over the whole integration domain of the loop

momenta.

Set to zero any saleless integral.
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A simple example

G (q2,m2; d) =

∫

d

d

k

(k2 −m

2)2(q − k)2

with d = 4− 2ε in the limit m

2/q2 → 0.
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∫ ∞
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Here one an hange the order of integration and Taylor

expansion.
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The additional piees anel eah other beause

∫ Λ

0

k

−ε−n+l−1

dk = Λ−ε−n+l ,

∫ ∞

Λ

k

−ε−n+l−1

dk = −Λ−ε−n+l

We did not refer to the zero value of saleless integrals

∫ ∞

0

k

λ
dk = 0.
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Eah resulting integral is evaluated in the orresponding

domain of ε where it is onvergent, with a subsequent analyti

ontinuation to the initial domain, i.e. a viinity of ε = 0.

The remainder an be desribed as

R

n

G = (1−M

n

1

)(1−M

n

2

)G

=

∫ ∞

0

k

−ε

[

(1− T n

m

)
1

k +m

] [

(1− T n

k

)
1

k + q

]

dk
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n
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) + R

n

where

1− (1−M

n

1

)(1−M
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2

) = M

n

1

+M
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2

−M

n

1

M

n

2

Set saleless integrals in M

n

1

M

n

2

to zero to obtain

G ∼ M

n

1

G +M

n

2

G + R

n

G
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Let Reε < 0. Then

∫ ∞

0

k

−ε

[

(1− T j−1

k

)
1

k + q

]

T (j)
m

)
1

k +m

dk

∼ m

j

∫ ∞

0

k

−ε−j−1

[

(1− T j−1

k

)
1

k + q

]
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∫ ∞

0

k

−ε−j−1

[

(1− T j−1

k

)
1

k + q

]

is nothing but the analyti ontinuation of the integral

∫ ∞

0

k

−ε−j−1

1

k + q

from 0 < −Reε < 1 to j < −Reε < j + 1.

Like in the ase of the analyti ontinuation of the distribution

x

λ
+ from Reλ > −1 to the whole omplex plane

[I.M. Gelfand '55℄, i.e. for integrals

∫ ∞

0

x

λφ(x)dx
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Jantzen [B. Jantzen'11℄ provided detailed explanations, using

one- and two-loop examples, of how this strategy works by

starting from regions determined by some inequalities and

overing the whole integration spae of the loop momenta,

then expanding the integrand and then extending integration

and analyzing all the piees whih are obtained.

An indiret proof [V.S.'90℄ of expansion by regions for limits

typial of Eulidean spae (where one has two di�erent regions

whih an be alled large and small).

Expansion by subgraphs [K.G. Chetyrkin'88, S. Gorishny'89℄,

for example, in the o�-shell large-momentum limit, i.e. where

a momentum Q is onsidered large and momenta q

i

as well as

the masses m

j

are small,

GΓ ∼
∑

γ

GΓ/γ ◦ Tqγ ,mγ
Gγ
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How to �nd relevant regions?

For limits typial of Eulidean spae, these are regions of large

(hard) and small (soft) momenta.

For the Regge limit and various versions of the Sudakov limit,

these are hard, soft, 1-ollinear, . . . , ultrasoft regions.

For the threshold limit y = m

2 − q

2/4 → 0, one has

(hard), k

0

∼
√

q

2 , ~k ∼
√

q

2 ,

(soft), k

0

∼ √
y , ~k ∼ √

y ,

(potential), k

0

∼ y/
√

q

2 , ~k ∼ √
y ,

(ultrasoft), k

0

∼ y/
√

q

2 , ~k ∼ y/
√

q

2 .

where q = (q
0

,~0).
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with propagators 1/(−p2 +m

2

l

− i0)
∫ ∞

0

. . .
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(
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Expansion by regions in Feynman parameters [V.S.'99℄, also

formulated in the physial language.

Feynman parametri representation for a Feynman integral

with propagators 1/(−p2 +m

2

l

− i0)
∫ ∞

0

. . .

∫ ∞

0

δ
(

∑

x

i

− 1

)

U

n−(h+1)d/2
F

hd/2−n

dx

1

. . . dx
n

where n is the number of lines (edges), h is the number of

loops (independent iruits) of the graph,

F = −V + U

∑

m

2

l

x

l

,

and U and V are two basi funtions

(Symanzik polynomials, or graph polynomials).
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One an onsider quite general limits for a Feynman integral

whih depends on external momenta q

i

and masses and is a

salar funtion of kinemati invariants and squares of masses,

s

i

, and assume that eah s

i

has ertain saling ρκi

where ρ is a

small parameter.

A region → saling, i.e. x

i

→ ρri x
i

where ρ is a small

parameter onneted with a given limit.
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A systematial proedure to �nd regions based on geometry of

polytopes and implemented as a publi omputer ode asy.m

[A. Pak & A.V. Smirnov'10℄ whih is now inluded in the ode

FIESTA [A.V. Smirnov'09-16℄

Using this ode one an not only �nd relevant regions but also

evaluate numerially oe�ients at powers and logarithms of

the given expansion parameter.

Numerous appliations have shown that the ode asy.m works

onsistently even in ases where the funtion F is not positive

� see, e.g.

[J.M. Henn, K. Melnikov & V.S.'14; F. Caola, J.M. Henn,

K. Melnikov & V.S.'14℄
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Generalizations of this proedure to some ases where terms of

the funtion F are negative

[B. Jantzen, A. Smirnov & V.S.'12℄

Potential and Glauber regions.

An example: one-loop diagram with two massive lines in the

threshold limit y = m

2 − q

2/4 → 0

F (q2, y) = iπd/2 Γ(ε)

×
∫ ∞

0

∫ ∞

0

(α
1

+ α
2

)2ε−2 δ (α
1

+ α
2

− 1) dα
1

dα
2

[

q

2

4

(α
1

− α
2

)2 + y(α
1

+ α
2

)2 − i0

]ε

The ode asy.m in its �rst version revealed only the

ontribution of the hard region, i.e. α
i

∼ y

0

.
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In the �rst domain, turn to new variables by

α
1

= α′
1

/2, α
2

= α′
2

+ α′
1

/2 and arrive at

iπd/2 Γ(ε)
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2
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2
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2
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q

2
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2
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1
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Deompose integration over α
1

≤ α
2

and α
2

≤ α
1

, with equal

ontributions.

In the �rst domain, turn to new variables by

α
1

= α′
1

/2, α
2

= α′
2

+ α′
1

/2 and arrive at

iπd/2 Γ(ε)

2

∫ ∞

0

∫ ∞

0

(α
1

+ α
2

)2ε−2 δ (α
1

+ α
2

− 1) dα
1

dα
2

[

q

2

4

α2

2

+ y(α
1

+ α
2

)2 − i0

]ε .

Two regions: (0, 0) and (0, 1/2). The seond one, with

α
1

∼ y

0, α
2

∼ √
y gives

iπd/2 Γ(ε)

2

∫ ∞

0

dα
2

(

q

2

4

α2

2

+ y

)ε ,
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[T. Semenova, A. Smirnov & V.S.'19℄:

Let us use the parametri representation of Lee and

Pomeransky [R.N. Lee and A.A. Pomeransky'13℄

G (t, ε) =

∫ ∞

0

. . .

∫ ∞

0

P

−δ
dx

1

. . . dx
n

,

where δ = d/2 = 2− ε and P = U + F .

Feynman parametri representation an be obtained from it by

inserting 1 =
∫

δ(
∑

i

x

i

− η)dη, saling x → ηx and

integrating over η.
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limit or (p
1

+ p

3

)2/(p
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)2 for the Regge limit.

Let P be a polynomial with positive oe�ients,

P(x
1

, . . . , x
n

, t) =
∑

w∈S



w

x

w

1

1

. . . xwn

n

t

w

n+1 ,

where S is a �nite set of points w = (w
1

, ...,w
n+1

).

The Newton polytope N
P

of P is the onvex hull of the set S

in the n + 1-dimensional Eulidean spae R
n+1

equipped with

the salar produt v · w =
∑

n+1

i=1

v

i

w
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Let t be the small parameter, e.g. −m2/q2 for the Sudakov

limit or (p
1

+ p

3

)2/(p
1

+ p

2

)2 for the Regge limit.

Let P be a polynomial with positive oe�ients,

P(x
1

, . . . , x
n

, t) =
∑

w∈S



w

x

w

1

1

. . . xwn

n

t

w

n+1 ,

where S is a �nite set of points w = (w
1

, ...,w
n+1

).

The Newton polytope N
P

of P is the onvex hull of the set S

in the n + 1-dimensional Eulidean spae R
n+1

equipped with

the salar produt v · w =
∑

n+1

i=1

v

i

w

i

.

A faet of P is a fae of maximal dimension, i.e. n.
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The main onjeture.

The asymptoti expansion of

G (t, ε) =

∫ ∞

0

. . .

∫ ∞

0

P

−δ
dx

1

. . . dx
n

,

in the limit t → +0 is given by

G (t, ε) ∼
∑

γ

∫ ∞

0

. . .

∫ ∞

0

[

Mγ (P(x1, . . . , xn, t))
−δ
]

dx

1

. . . dx
n

,

where the sum runs over faets of the Newton polytope N
P

of

P, for whih the normal vetors r

γ = (r γ
1

, . . . , r γ
n

, r γ
n+1

),
oriented inside the polytope have r

γ
n+1

> 0.
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The main onjeture.

The asymptoti expansion of

G (t, ε) =

∫ ∞

0

. . .

∫ ∞

0

P

−δ
dx

1

. . . dx
n

,

in the limit t → +0 is given by

G (t, ε) ∼
∑

γ

∫ ∞

0

. . .

∫ ∞

0

[

Mγ (P(x1, . . . , xn, t))
−δ
]

dx

1

. . . dx
n

,

where the sum runs over faets of the Newton polytope N
P

of

P, for whih the normal vetors r

γ = (r γ
1

, . . . , r γ
n

, r γ
n+1

),
oriented inside the polytope have r

γ
n+1

> 0.

Let us all these faets essential.

Let us normalize these vetors by r

γ
n+1

= 1.
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The ontribution of a given essential faet is de�ned by the

hange of variables x

i

→ t

r

γ

i

x

i

in the integral and expanding

the resulting integrand in powers of t.

This leads to the following de�nitions.

For a given essential faet γ, let us de�ne the polynomial

P

γ(x
1

, . . . , x
n

, t) = P(tr
γ

1

x

1

, . . . , tr
γ

n

x

n

, t) ≡
∑

w∈S



w

x

w

1

1

. . . xwn

n

t

w ·rγ

The salar produt w · r γ is proportional to the projetion of

the point w on the vetor r

γ
. For w ∈ S , it takes a minimal

value for all the points belonging to the onsidered faet

w ∈ S ∩ γ. Let us denote it by L(γ).
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The polynomial P

γ
an be represented as

t

L(γ) (Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t)) ,
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The polynomial P

γ
an be represented as

t

L(γ) (Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t)) ,

where

P

γ
0

(x
1

, . . . , x
n

) =
∑

w∈S∩γ



w

x

w

1

1

. . . xwn

n

,

P

γ
1

(x
1

, . . . , x
n

, t) =
∑

w∈S\γ



w

x

w

1

1

. . . xwn

n

t

w ·rγ−L(γ) .
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The polynomial P

γ
an be represented as

t

L(γ) (Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t)) ,

where

P

γ
0

(x
1

, . . . , x
n

) =
∑

w∈S∩γ



w

x

w

1

1

. . . xwn

n

,

P

γ
1

(x
1

, . . . , x
n

, t) =
∑

w∈S\γ



w

x

w

1

1

. . . xwn

n

t

w ·rγ−L(γ) .

The polynomial P

γ
0

is independent of t while P

γ
1

an be

represented as a linear ombination of positive rational powers

of t with oe�ients whih are polynomials of x .
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For a given faet γ, the operator Mγ ats on the integrand as

follows

Mγ (P(x1, . . . , xn, t))
−δ

= t

∑
n

i=1 r
γ

i

−L(γ)δT
t

(Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t))−δ

= t

∑
n

i=1 r
γ

i

−L(γ)δ (Pγ
0

(x
1

, . . . , x
n

))−δ + . . .

where T
t

performs an asymptoti expansion in powers of t at

t = 0.

In partiular, the LO term of a given faet γ

t

−L(γ)δ+
∑

n

i=1 r
γ

i

∫ ∞

0

. . .

∫ ∞

0

(Pγ
0

(x
1

, . . . , x
n

))
−δ

dx

1

. . . dx
n

.
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An example:

G (t, ε) =

∫ ∞

0

(x2 + x + t)ε−1

dx

in the limit t → 0.

P(x , t) =
∑

(w
1

,w
2

)∈S (w1

,w
2

)x
w

1

t

w

2

The Newton polytope (triangle)

w2

w1γ1

γ2

Two essential faets γ
1

and γ
2

with the orresponding normal

vetors r

1

= (0, 1) and r

2

= (1, 1).
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γ
1

→ expanding the integrand in t. L0 is given by

∫ ∞

0

(x2 + x)ε−1

dx =
Γ(1− 2ε)Γ(ε)

Γ(1− ε)

γ
2

→ t times the integral of the integrand with x → tx

expanded in powers of t. L0 is given by

t

ε

∫ ∞

0

(x + 1)ε−1

dx = −t

ε

ε

The sum of the ontributions in the LO:

G (t, ε) ∼ − log t + O(ε)
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Two essential faets:

CDE ∈ the plane w

3

= 0, with the normal vetor (0, 0, 1) →
expansion in t.

ACD ∈ the plane w

1

− w

3

= 1, with the normal vetor

(−1, 0, 1)
→ t

−2

∫∞

0

x

1

[x
1

/t + x

2

+ (x
1

/t)(t(x
1

/t + x

2

)]ε−2 = . . .
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A typial feature of results obtained within expansion by

regions (or, subgraphs) is the appearane of poles in δ or ε on

the right-hand side: usually, they are infrared and ultraviolet

but they an be also ollinear.

The anellation of these poles is a very natural hek of the

expansion proedure, i.e. the pole part of the sum of terms of

the expansion should be equal to the pole part of the initial

integral.
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Compliations.

1. The ontribution of eah essential faet to the expansion is

evaluated in the orresponding domain of δ where it is

onvergent and then the result it ontinued analytially to a

desired domain. Maybe, it will be natural to proeed with

subtration operators.

2. One has to distinguish situations where ontributions of

individual faets are not regularized by the initial regularization

parameter δ. A natural way to proeed is to introdue

auxiliary analyti regularization by inserting powers x

λ
i

i

.

For Feynman integrals at Eulidean external momenta, Speer

proved that the orresponding dimensionally and analytially

regularized parametri integral is onvergent in a non-empty

domain of parameters (ε, λ
1

, . . . , λ
n

).
A generalization of Speer's theorem to the ase of LP

representation [T. Semenova, A. Smirnov & V.S.'19℄.
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Advantages of the new formulation.

1. The degree of P = U + F is less than the degree of UF .

Therefore, the urrent version of asy is muh more powerful.

Equivalene of expansion by regions for Feynman integrals

based on the standard Feynman parametri representation and

the LP representation (implemented in FIESTA) was proven

[T. Semenova, A. Smirnov & V.S.'19℄

2. The new formulation has more hanes to be proven.

A proof in a speial ase

[T. Semenova, A. Smirnov & V.S.'19℄.
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The leading ontribution of a given essential faet.

If the point

(

1

δ
, . . . , 1

δ

)

∈ R
n

is inside π(Γ) for some faet Γ
then the leading asymptotis is given by

t

−L(Γ)δ+
∑

i

r

Γ
i

∫ ∞

0

. . .

∫ ∞

0

(

∑

w∈Γ∩S



w

y

w

1

1

. . . yw

n

n

)−δ

dy

1

. . . dy
n

when t → +0.
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Expansion by regions is a very important strategy

suessfully applied in numerous alulations.

The Lee�Pomeransky representation looks very natural to

be used in proving expansion by regions.

For the moment, expansion by regions still has the status

of experimental mathematis. Hopefully, it will be

mathematially justi�ed.

Divide et impera
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