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SCATTERING AMPLITUDES IN QFT

Scattering amplitudes are one of the main ingredients to extract physical predictions from QFT
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Typically, scattering amplitudes can only be computed as perturbative series in the coupling
constant(s), which involves expansion in number of loops and number of legs
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INCREASING COMPLEXITY

Complexity increases (obviously) from many points of view

1. combinatorial: number of objects to compute increases

2. analytical: new mathematical structures appear and must be understood

3. structure: splitting into different ingredients introduces spurious IR poles, whose
cancellation in physical observables becomes more and more cumbersome... (see L.

Magnea’s talk)
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[00000) My focus here:

how to organise calculation of
multi-loop (virtual) scattering

[00000) amplitudes




MULTILOOP SCATTERING AMPLITUDES: the stanparp way
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MULTILOOP SCATTERING AMPLITUDES: the stanparp way

Standard steps:

1) Obtain somehow the integrand (From Feynman diagrams, Unitarity, ...?)

2) Somehow reduce this integrand to a basis of integrals to compute (T. Peraro’s talk)

3) Compute the integrals (for once I will NOT talk about that!)
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» Number of diagrams grows factorially
(not a real problem though, at least for
reasonable processes in QCD...)



WHAT ABOUT THE INTEGRAND?

= Z Feynman Diagrams — ?

Problems:

» Number of diagrams grows factorially
(not a real problem though, at least for
reasonable processes in QCD...)

> More serious problem(s): “tensor
decomposition”
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TENSOR DECOMPOSITION

Y A Strip it of Lorentz and Dirac structures

l

N / d®k 1 B
(2m)4 k2(k — p2)2(k — pa — p3)2(k — p1 — p2 — p3)?

Scalar Feynman Integrals are
what we know how to compute

[ will talk about an ANCIENT method to do this: the projector - form factor method



THE PROJECTOR-FORM FACTOR METHOD

The idea is very simple:

1. Use Lorentz invariance, gauge invariance (and any other allowed symmetries) to
parametrise the scattering amplitude at any number of loops in terms of tensor
structures and scalar form factors

2. Define projector operators that extract these form factors from the corresponding
Feynman diagrams (or anything else you like, really...)
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The idea is very simple:

1. Use Lorentz invariance, gauge invariance (and any other allowed symmetries) to
parametrise the scattering amplitude at any number of loops in terms of tensor
structures and scalar form factors

2. Define projector operators that extract these form factors from the corresponding
Feynman diagrams (or anything else you like, really...)

Lorentz
Invariance

n
MV M\ = ) F,T" = (Fy(p.m? p*p* + Fy(p.m?) g")
=1

p*p* 2 Gauge
— | omv _
<g p2 > Fp,m?) Invariance!
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p.p
To extract F(p, m?) 1 define a projector operator PW = C(d, p, m?) <8ﬂy — ﬂ;)
P

I can then determine the coefficient C(d, p, m?) by imposing PWH”’“ = F(p, m?)

1 PuPy
Wefind P, =——18,— =

Now at any number of loops, the form factor F(p, m?) can be obtained by generating
Feynman diagrams and applying the projector P, on each of them (or on clever
combinations of them... or on any other representation you might have)
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p.p
To extract F(p, m?) 1 define a projector operator PW = C(d, p, m?) <8ﬂy — ﬂ;)
P

I can then determine the coefficient C(d, p, m?) by imposing PWH”’“ = F(p, m?)

| p.p
We find P =—<gﬂy— MU)

mod—-1

All algebra has to be performed in d space-time dimensions to be able to use the
method in CDR (Conventional Dimensional Regularisation)



THE PROJECTOR-FORM FACTOR METHOD

Works in general, no restrictions of any kinds in principle:

1. Pick your favourite process

2. Use Lorentz + gauge + any symmetry (parity, Bose etc...) to find minimal set of
tensor structures in d space-time dimensions

3. Derive projectors operators to single out corresponding form factors

4. Apply these projectors on your favourite representation for the scattering amplitude

9= FT ~ M= Y TT]
J pol

P=2 M), T = P =F
k



PROBLEMS WITH PROJECTORS

Seems neat. Where are the issues?
Let’s have a look at a less simple example: massless quark scattering gg — QQ

Studied up to 2 loops first by N. Glover in hep-ph/0401119

0— Q(pla )\1) + Q(p27 )\2) + Q(p37 )\3) + Q(p47 )\4)


http://arxiv.org/abs/hep-ph/0401119

PROBLEMS WITH PROJECTORS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Seems neat. Where are the issues?
Let’s have a look at a less simple example: massless quark scattering gg — QQ

Studied up to 2 loops first by N. Glover in hep-ph/0401119

0— Q(pla )\1) + Q(p27 )\2) + Q(p37 )\3) + Q(p47 )\4)

What is the most general d-dimensional tensor structure?

ooooo


http://arxiv.org/abs/hep-ph/0401119

PROBLEMS WITH PROJECTORS

Seems neat. Where are the issues?

Let’s have a look at a less simple example: massless quark scattering qq — QQ

Studied up to 2 loops first by N. Glover in hep-ph/0401119

0— Q(pla )\1) + Q(p27 )\2) + Q(p37 )\3) + Q(p47 )\4)

What is the most general d-dimensional tensor structure?

Problem: y-algebra is not closed in d-dimensions!

In principle at arbitrary loops I can build arbitrary fermion lines with arbitrary
numbers of matrices and they will all be independent!
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0— Q(pla )\1) + g(p27 )\2) + Q(p37 )\3) + Q(p47 >\4)
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Forget about n loops then. Let’s follow Glover @ 2 loops: 4 équ)QQ — Z A; D,
J=1
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Forget about n loops then. Let’s follow Glover @ 2 loops: 4 EIZQZ)QQ Z A; D,

D1 = u(p1)vu w(p2) w(p3)yu, uw(pa),

Dy = u(p1)psu(p2) w(ps)pru(ps),

D3 = u(P1)Vuy Yz Yus w(P2) W(P3) Vg Vpso Vs U(P4),

Dy = (1) Y1 P3Vus W(P2) W(D3) V1 P17V 0(D4),

D5 = u(p1) Vs Vi Viss Ysa Yus W(D2) WD3) Vg Vpso Vias Vpra Vs U(P4 ),
De = U(P1) Vi1 Yo P3Vpua Vs W(D2) U(P3) Voux Viao P1Vpaa Vs 4(P4).
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PROBLEMS WITH PROJECTORS

Define the 6x6 matrix M;; = Z D; D;, its inverse will provide us with the relevant projectors
pol

1
P(AQ) = X (

32513553512(d — 5)(d — 7)(d — 3)(d — 4)

— 513(35533d° — 55513593d° + 1046513593d* — 18725%5d + 2432575 — 45455,d*
—6040513593d — 2688525 + 368525d% + 1928535d — 20575d° + 11136513593) D1

+ 2813(—28%3d2 — 9813823d2 + 142s13893d — 448513593 + 7833d2 + 1368%3 — 488%3
+28525d — 62525d) DA

+ (—3405%,d3 + 1100852, — 740513593d°> + 44032513593 — 260533d> — 414453,d + 371253,
+15575d* + 28525%5d* — 28864513523d + 1604555d* + 6944513593d* — 9968575d
—|—30813823d4 + 158%3d4)pg

— 813823(12813 + 823d — 4823 — Slgd)’D;

+ (—6s53d 4 24575 + 2513593d” — 40513593d — 145%3d + s33d* + 8535 + s35d° + 192313323)292j

— 2(55%,d> + 5535d° + 10513503d> — 240513503d> — 1005%3d% — 56533d> + 580s%5d

+18325s135923d + 1968%3d — 2088%3 — 8008%3 — 4224813823)@1) :

with growth of number of tensors, the inversion can become extremely expensive!



PROBLEMS WITH PROJECTORS

Define the 6x6 matrix Mij = Z D; DJ.T, its inverse will provide us with the relevant projectors
pol

1
PU) = o s
— 513(35533d° — 55513593d° + 1046513593d* — 18725%5d + 2432575 — 45455,d*
—6040s13523d — 2688555 + 368575d> 7000 7100 2 T manas o
+ 2813(—28%3d2 — 9813823d2 + 1425
+28525d — 62525d) D

+ (—340s%,d° + 1100859, — 7405135 They arise because the tensors we have 712s3,
+15s2,d* + 285252,d% — 28864513 chosen are actually NOT independent in

Artificial polesind — 4

d=4
—|—30813823d4 + 158%3d4)pg
— 513523(12513 + s93d — 45923 — s13d Matrix not invertible in d=4
+ (—6535d + 24575 + 2513893d° — 40. .513523) D}

— 2(55%,d> + 5535d° + 10513503d> — 240513503d> — 1005%3d* — 56553d° + 5805%5d

+18325s135923d + 1968%3d — 2088%3 — 8008%3 — 4224813823)7)1) :
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HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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What are we interested in are helicity amplitudes, in d=4 in 't Hooft-Veltman scheme

n n m<n
A=Y FT, —5 d0p....00 =Y FT,.... ) = ) F S, .... )
i=1 i=1 =1
Combinations of
original form
factors Helicity amplitudes, spinor
products, momentum
twistors...

“By definition”, in 't Hooft-Veltman scheme there cannot be more independent form factors
than independent helicity amplitudes

Indeed for massless gg — QQ there are 4 helicities, reduced to 2 by parity invariance!
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What are we interested in are helicity amplitudes, in d=4 in 't Hooft-Veltman scheme

m<n

d=)FT, —p d,....00=) FT.....00 =) F S5..... )
=1 '

i=1 . /
Combinations of

original form
factors Helicity amplitudes, spinor

products, momentum
twistors...

For gg — QQ, M is not invertible in d=4, but a 2x2 restriction of M is invertible!

I can choose any 2 independent tensors, any other (with any number of y matrices), will be

linearly dependent in d=4!
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Let then pick 2: I.=D;, j=12 M,L.ijz — T,L-TTj :
S10 + 2893
1 1 . 523(S17 + 573)
—1 23(S12 + 823
] d— 3 | S122 S1o + 2553 (d —2)s75 + 45,3(515 + 5»3)

$73(812 + $23) $33(812 + 523)?

the matrix is smoothind — 4
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Let then pick 2 I,=D;, j=12 M2X? TTT],
S10 + 2893
1 1 1 $-3(S15 + 593)
—1 23(S12 + 523
] d— 3 | S122 S1o + 2553 (d —2)s75 + 45,3(515 + 5»3)

$73(812 + $23) $33(812 + 523)?

the matrix is smoothind — 4

Define the 2 projectors

D, — i(M(Qw)) —1 —T

g=1
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Tz' :Tz _Z(F]TZ) Tj, for i:3,4,5,6,...
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Let then pick 2: I.=D;, j=12 M,L.ijz — T,L-TTj :
S10 + 2893
1 1 . 523(S17 + 573)
—1 23(S12 + 823
] d— 3 | S122 S1o + 2553 (d —2)s75 + 45,3(515 + 5»3)

$73(812 + $23) $33(812 + 523)?

the matrix is smoothind — 4
2 1
¥s) 2x2)\ Al ini
P, = E ( M ) T and the remaining tensors as

2
Tz' :Tz —Z(?JTZ) Tj, for i:3,4,5,6,...

[ am effectively block-diagonalising the matrix!



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

The remaining tensors

2
Tz’ =1, — Z (FJTZ) Tj , for = 3, 4, 5, 6, are such that

J=1

lim T(Ay, ..., 45) =0, j = 3,4,56,...
d—4
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The remaining tensors

Ti:Ti_

2
J:

(?jTZ-) Tj , for 1=23,4,5,0,... are such that
1

lim T(Ay, ..., 45) =0, j = 3,4,56,...
d—4

New tensors are smooth linear combinations of the old ones:

_ 12554 _ 24 _
512 512
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The remaining tensors

2
Tz' =1, — (FJTZ) Tj , for = 3, 4, 5, 6, are such that
j=1
im 74y, 4) =0, j=3456..

New tensors are smooth linear combinations of the old ones:

_ 12554 _ 24 _

512 512 (y \
N —5 0 0
And the new 6x6 inverse matrix becomes/block-diagonal (Ml]> =| O R
: ]
\ 0 )

R;; contains the complexity that we saw before, but actually NEVER need to even compute it!



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

By construction, helicity amplitudes only receive contributions from two tensors!

And the projectors that we need to apply on the Feynman diagrams are much simpler




HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

By construction, helicity amplitudes only receive contributions from two tensors!

And the projectors that we need to apply on the Feynman diagrams are much simpler

Notice that
1. All manipulations are done in d dimensions, only use d=4 to get rid of some tensors!!
2. No spurious poles in d=4 in the new projectors

3. Number of tensors matches number of independent helicity amplitudes! Minimal
complexity?




HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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The construction is very generic. For a given problem, assume there are n tensors in d-

dimensions and that j = 1,...,m < n tensors are independent in d=4: T] =T, j=1,., m

m
Define m Projectors P = Z Cka and block-diagonalise the system of projectors:
k=1

n n T]:T]9J:1 °°°°° m
d=LhG — A= LR,
m
= = ) )
l ’ T,=T,— Y PT;, j=m+1,.n
k=1

Such that by construction
1. Clil_l;li]}(/ll ..... A«E)=0, j=m+1,...n

2. projectors are block-diagonal



APPLICATIONS T0 4-PARTICLE SCATTERING

1. Verified this construction for gg — gg and qgq — gg

2. Verified that physical projectors reproduce the same helicity amplitudes at 2 loops



APPLICATIONS T0 4-PARTICLE SCATTERING

1. Verified this construction for gg — gg and qg —

2. Verified that physical projectors reproduc plitudes at 2 loops

88 — 88 From 10 tensors in d-dimensions, to 8 in d=4 (8 indep. helicities)

qg — 94 From 5 tensors in d-dimensions, to 4 in d=4 (4 indep. helicities)

Projectors become substantially simpler, but one might argue improvement in
number does not seem that impressive...

[t becomes much more interesting from n > 5 particle scattering !



APPLICATION TO N-PARTICLE SCATTERING

For n > 5 the method becomes even simpler, because momenta provide complete set
of 4 vectors in d=4 dimensions!

Take the prototypical case of 5-gluon scattering:

g(py) + g(py) + g(p3) + g(py) + g(ps) = 0



APPLICATION TO N-PARTICLE SCATTERING

For n > 5 the method becomes even simpler, because momenta provide complete set
of 4 vectors in d=4 dimensions!

Take the prototypical case of 5-gluon scattering:

g(py) + g(py) + g(p3) + g(py) + g(ps) = 0

Standard d-dimensional approach:
1. Rank-5 tensor out of g/, pl.”, i = 1,...,4 contains 1724 tensor structures!
2. Imposing gauge invariance reduced to 142 independent structures

3. Projectors can (painfully!) be obtained inverting 142x142 matrix — ~ 1GB of text file!
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g(py) + g(py) + g(p3) + g(py) + g(ps) — O

Typical tensors will be like: THiF2H3Halts — pl.” 119]”2]?,/: 3171'“ 4pé4 :

Ui M3 bals — 1 P19 H2 M3 o Ha M
T12345_pipj pkg45

Uik Hsfals — M1 oMo M3 o Halls
I p;'8"sg



APPLICATION TO N-PARTICLE SCATTERING

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

g(py) + g(py) + g(p3) + g(py) + g(ps) — O

Typical tensors will be like: THiF2H3Halts — pl.” 1PJH2P,/;£ SPZM 4]75 :

Ui M3 bals — 1 P19 H2 M3 o Ha M
T12345_pipj pkg45

HiHoH3HaHs — 1M1 o HoH3 o Hals
I p;'8"sg

But since p/, ..., p; are complete set in d=4, g"” is not linear independent!

I don’t even need the construction that I have made for 4-point, I can drop all of them!



APPLICATION TO N-PARTICLE SCATTERING

g(py) + g(py) + g(p3) + g(py) + g(ps) — O

Typical tensors will be like: THiH2H3Hats = pl./“l lpjfu 2 p]/: 3pl,u 4p£l .
Uiko M3balls — 1 P19 H2 M3 g Ha M
i 1% )
— M
Tﬂllu —_ pl g 4H5
But since p, ..., p, are complete set in d=4, g"” is not linear independent!

I don’t even need the construction that I have made for 4-point, I can drop all of them!



APPLICATION TO N-PARTICLE SCATTERING

g(py) + g(py) + g(p3) + g(py) + g(ps) — O

Typical tensors will be like: THiFaHsHatts — pi” 1]7;!2[7: 3pl,u 4p£l :

These are (using gauge invariance) 2° = 32 independent tensors: 32 helicity amplitudes!

New 32x32 matrix can be easily inverted: ~ 500kb against 1GB !

No spurious poles and no dependence on d!



APPLICATION TO N-PARTICLE SCATTERING

Similarly we can study:
1. 5-point scattering with fermions (massless or massive, of course)

2. n-point scattering with gluons shows even bigger simplifications:

Further examples

Massive external legs: H+4g, it requires 43 tensors in d-dimensions (1 scalar particle!)

In d=4 they becomes 2* = 16 independent structures

6-gluons for example would entail tens of thousands of tensors in d dimensions

With this method only 2° = 64 projectors are needed! It definitely scales much more nicely!



CONCLUSIONS

1. Projector - form factor method is ancient method to compute scattering
amplitudes

2. Strong point: very general
3. Weak point: too general, it works in CDR!

4. If we work in tHV (to compute helicity amplitudes) the method can be
substantially simplified

5. Decrease of orders of magnitude in complexity!

6. Application to multi-loop and multi-leg processes not impossible
anymore!



