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Impact parameter determination with Machine 
learning algorithm



Multiplicity is the number of CHARGED fragments 
after nuclear reaction

 4 charged particles (2 heavy ion, 2 protons, neutron 
doesn’t count since it is neutral), so multiplicity = 4

 Impact parameter b is 
the perpendicular 
distance between 
projectile and target

Terminology in this presentation
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A lot of observables are sensitive to impact parameter.

 To compare data with theory, we need to know impact parameter of the detected events for 
the comparison to be valid.

 Traditionally, impact parameter is calculated from multiplicity through the following method:
• Two major assumptions: Multiplicity increases monotonically with decreasing impact parameter, and 

event statistics follows geometrical distribution 𝑑𝜎 = 2𝜋𝑏𝑑𝑏

• The formula is 𝑏 𝑀 = 𝑏𝑚𝑎𝑥
𝑁>𝑀

𝑁𝑡𝑜𝑡𝑎𝑙

• 𝑏𝑚𝑎𝑥 is the measured cross-section, calculated from the ratio of beam particle frequency over 
reaction frequency and target thickness.

The importance of impact parameter
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A class of algorithms that figures out the correlation between input and output on its own with 
training data automatically without user intervention, and can be applied to data outside of the 
training data set.

Examples: Handwritten character recognition, voice recognition, autopilot,…

Need training data for ML algorithm to learn. It will figure out correlations between variables.

Machine learning (ML) algorithm
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Yongjia Wang demonstrated the viability of using ML algorithms to predict impact parameter.

Ref: https://iopscience.iop.org/article/10.1088/1361-6471/abb1f9

 The training data is generated from the Ultra Relativistic Quantum Molecular Dynamics 
(UrQMD) model. It is a model that simulates the dynamics of heavy-ion collision. The fragments 
it generated has been shown to agree with data at different beam energies.

Specifically, the algorithm he used was LightGBM.

 Trained on UrQMD simulated data of Au + Au reaction with PERFECT detector. 

Previous endeavors on impact parameter determination with 
ML 
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Definition of mean absolute error

Mean absolute error of algorithms’ predictions on impact 

parameter at various beam energy
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Perfect detector is not realistic. Will the algorithm works with detector 
response?

 The detector to simulate: SπRIT detector, a time projection chamber 
(TPC). An experiment was performed with 132Sn + 124Sn at 270 MeV/A 
in 2016 at RIKEN, Japan, along with other Tin isotopic systems. 

Detector bias:
1. Experimental is setup to take data from central collisions.

2. Geometric efficiencies not 4 pi

3. Track reconstructions are complicated so not every tracks can be 
reconstructed  Detector efficiencies.

4. …

 To use the algorithm under a realistic experimental setting, we add 
detector response to UrQMD data with SpiRITROOT, simulation 
package for SpiRIT detector.

With detector simulation
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 7 inputs (features):
1. Transverse kinetic energy of hydrogen and helium isotopes.

2. Ratio of total transverse to longitudinal kinetic energy.

3. Total multiplicity of charged particles.

4. Total number of hydrogen and helium isotopes.

5. Averaged  transverse  momentum  of  hydrogen  and helium isotopes

6. Number of free protons at mid-rapidity |yz/ybeam|≤0.5

7. Averaged transverse momentum of free protons at mid rapidity |yz/ybeam|≤0.5.

• Not set in stone. We can use more/less observables if you desired.

Output: impact parameter in fm

 Let’s train the algorithm on Sn + Sn at 270 MeV/A system instead of Au + Au. 

 Impact parameter of training data set is distributed uniformly from 0 – 10 fm such that the 
algorithm is exposed to enough central events when it is trained.

Input and output
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Quantify the uncertainty: Bias and Standard deviation 
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url: http://www.antarcticglaciers.org/glacial-geology/dating-

glacial-sediments-2/precision-and-accuracy-glacial-

geology/

Bias corresponds to accuracy

Std corresponds to precision
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Correct value Mean of the 

distribution

Bias

Std. Dev

𝑏𝑝𝑟𝑒𝑑 − 𝑏𝑡𝑟𝑢𝑒 (fm)



Made predictions on another batch of UrQMD simulation (test data) with uniform b-distribution.

LightGBM results 
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When trained with UrQMD events, the algorithm performs well on other batches of UrQMD
simulations.

But UrQMD is not 100% exactly reality, also different transport model predicts different results.

What happens if the training data set and prediction data set come from different models? Will 
it introduce errors? How well are the prediction?

 That’s what we are going to do, train algorithm on UrQMD events, make predictions on 
simulations of b = 3 fm events from four other models: dcQMD, AMD, IQMD VUU and ImQMD

Model dependence of the result
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Model dependence after detector response
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Without detector response

The width of the distributions are wider.

Without detector response Bias (fm) Std (fm)

AMD 1.1 1.0

DcQMD -0.2 0.7

ImQMD 0.3 0.9

IQMD 0.4 0.8

Mean of absolute values 0.5 0.9
With detector response Bias (fm) Std (fm)

AMD 1.1 0.9

DcQMD 0.8 1.2

ImQMD 0.2 1.0

IQMD -0.3 1.0

Mean of absolute values 0.6 1.0
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Illustration of Bias and Std. Dev.

Not actual distribution from the analysis.



 There’s no barrier to using the algorithm on experimental 
data, just substitute UrQMD observables with experimental 
values.

 Let’s do it and inspect the result…

 Important notes:

• Due to trigger conditions in SπRIT experiment, peripheral 
events are disproportionately discarded.

• Also, the measured 𝑏𝑚𝑎𝑥 = 7.5 fm is smaller than the real 
cross-section of Tin on Tin collision due to triggers.

• Therefore at high impact parameter, distribution of recorded 
impact parameter is actually not triangular.

• The tail of LightGBM actually agrees with our expectation 
better than the pure triangular distribution.

 To further inspect our predictions, we inspect an observable 
whose dependency on impact parameter is known.

Apply to real experimental data
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Reaction plane resolution
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Reaction plane is reconstructed empirically,
• The azimuth of the vector sum of transverse 

momentum vector is the reconstructed reaction plane.

 It relies on the fact that fragments preferably emits 
on reaction plane (collective flow).

 For central events, this asymmetry in fragment 
azimuth is less pronounced due to cylindrical 
symmetry arguments.

 Let ФM be the measured (reconstructed) reaction 
plane azimuth and ФR be the real reaction plane 
azimuth. 

 With LightGBM, <cos(ФM - ФR )> is closer to zero 
=> Width of ФM - ФR distribution is wider => Less 
pronounced cylindrical asymmetry.
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ML algorithm trained on UrQMD data shows acceptable model dependence.

ML algorithm can be trained to use in real experiment.

Central data selected by ML algorithm shows smaller <cos(ФM - ФR )>.

Summary
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