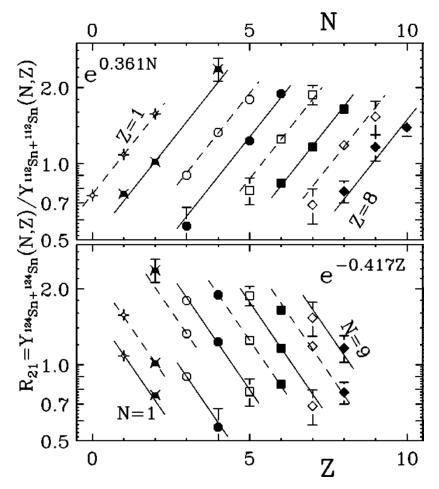
Isoscaling effect with Z=1 and 2 particles in Sn+Sn at 270 MeV/u

Jung Woo Lee

for SπRIT-collaboration

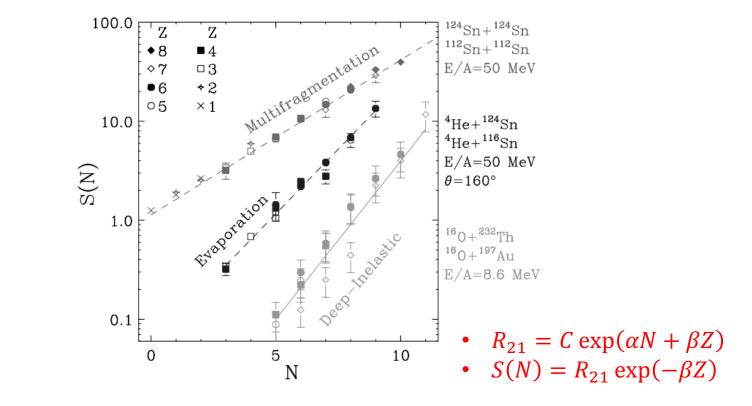
Korea University



Introduction to Isoscaling

- Grand canonical ensemble, thermal equilibrium assumption in heavyion collision the fragment yield can be written down as:
 - $Y^{prim.}(N, Z, T) = \frac{VA^{3/2}}{\lambda_T^3} \omega(N, Z, T) \exp\left[\frac{E_B(N, Z) + N\mu_n + Z\mu_p}{T}\right].$
 - $Y^{final}(N,Z,T) \simeq f(N,Z,T)Y^{prim.}(N,Z,T).$

* S. Albergo et al. Nuovo Cimento Soc. Ital. Fis., A 89 (1985) 1 * H. S. Xu et al. Phys. Rev. Lett. 85 (2000) 716

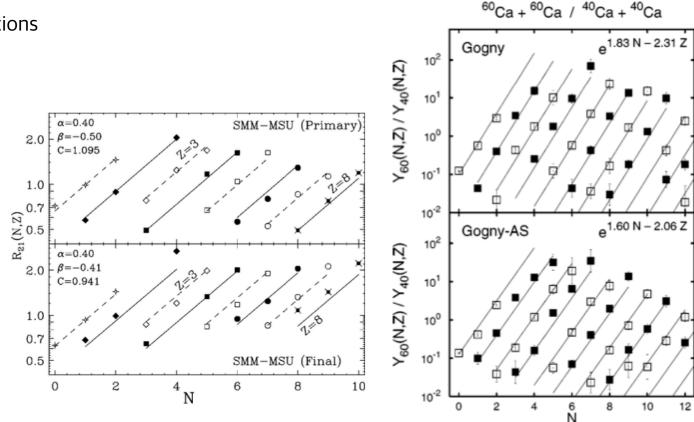

- We compare two collision system 2 and 1.
 - Two system have similar size and temperature.
 - System 2 is neutron rich system compared to system 1.
- The fragment yield ratio between two systems exhibit exponential behavior:
 - $R_{21} = Y_{system-2}(N, Z)/Y_{system-1}(N, Z).$
 - $R_{21} = C \exp(\alpha N + \beta Z)$, $\alpha = \frac{\Delta \mu_n}{T}$, $\beta = \frac{\Delta \mu_p}{T}$.

^{*} M. B. Tsang et al. (MSU) Phys. Rev. C 64 (2001) 041603

Introduction to Isoscaling

 Isoscaling was reported in many other experiments not only from the multi-fragmentation in heavy-ion collisions but in non symmetric collisions such as evaporation, deeply inelastic scattering and light ion induced reactions.

* M. B. Tsang et al. Phys. Rev. C 64 (2001) 041603
* M. B. Tsang et al. Phys. Rev. Lett. 86 (2001) 5023
* A. S. Botvina et al. Phys. Rev. C 65 (2002) 044610
* M. B. Tsang et al. Phys. Rev. C 64 (2001) 054615
* Akira Ono et al. Phys. Rev. C 68 (2003) 051601
* S. R. Souza et al. Phys. Rev. C 80 (2009) 044606

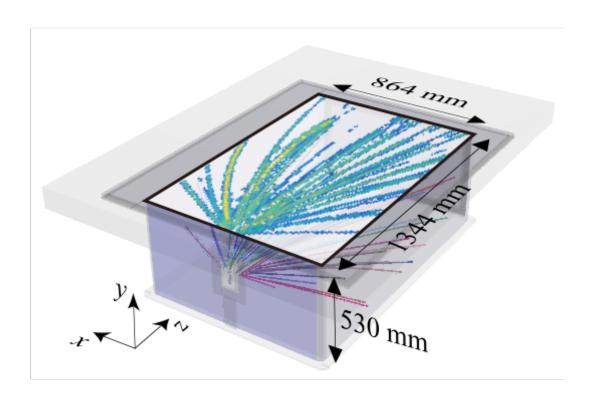

2021. 11. 24.

Introduction to Isoscaling

- Isoscaling was reported in many other experiments not only from the multi-fragmentation in heavy-ion collisions but in non symmetric collisions such as evaporation, deeply inelastic scattering and light ion induced reactions.
- Isoscaling was also reported in many model calculations
 - SMM (Statistical multi-fragmentation model),
 - EES (expanding emission source model),
 - AMD (antisymmetrized molecular dynamics).
- Scaling parameter *α* and symmetry energy *C*_{sym}:

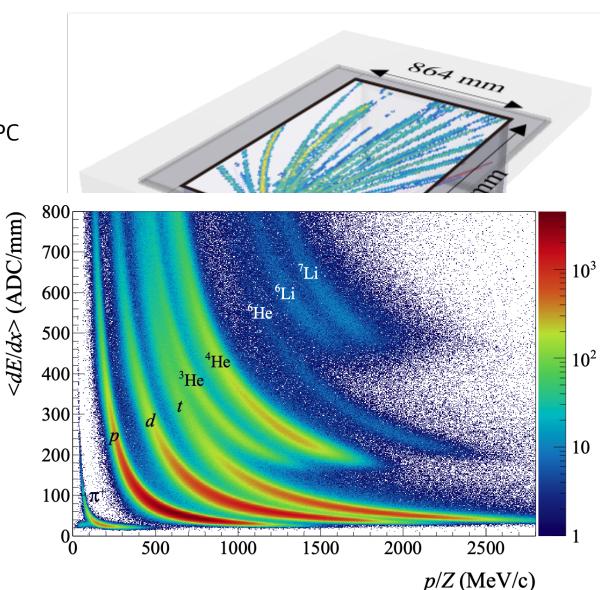
•
$$\alpha = \frac{4C_{sym}}{T} \left[\left(\frac{Z_1}{A_1} \right)^2 - \left(\frac{Z_2}{A_2} \right)^2 \right]$$
, (T < 5 MeV).

* M. B. Tsang et al. Phys. Rev. C 64 (2001) 041603
* M. B. Tsang et al. Phys. Rev. Lett. 86 (2001) 5023
* A. S. Botvina et al. Phys. Rev. C 65 (2002) 044610
* M. B. Tsang et al. Phys. Rev. C 64 (2001) 054615
* Akira Ono et al. Phys. Rev. C 68 (2003) 051601
* S. R. Souza et al. Phys. Rev. C 80 (2009) 044606



2021. 11. 24.

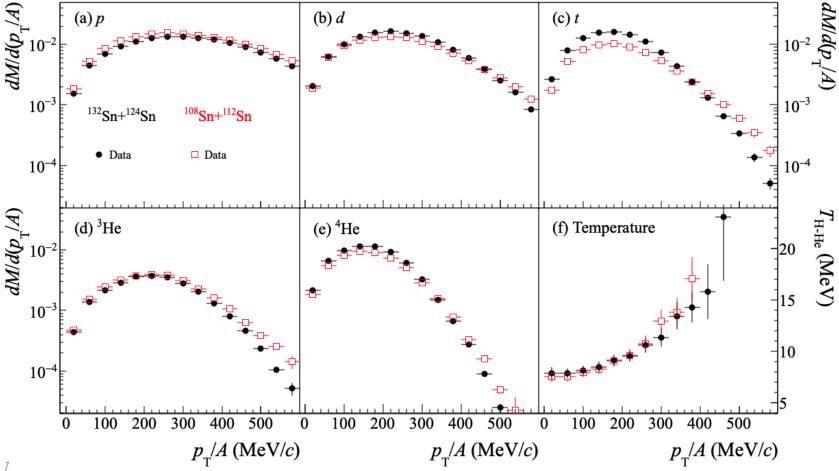
IWM-EC 2021 | Jung Woo Lee


Sπ**RIT** Experiment

- Sn + Sn collisions at 270 MeV/u measured with SπRIT-TPC inside the SAMURAI magnet producing 0.5 T at RIBF RIKEN (2015-2016).
 - ¹³²Sn + ¹²⁴Sn (N/Z = 1.56)
 - ¹⁰⁸Sn + ¹¹²Sn (N/Z = 1.20)
 - ¹²⁴Sn + ¹¹²Sn (N/Z = 1.36)
 - ¹¹²Sn + ¹²⁴Sn (N/Z = 1.36)

Sπ**RIT Experiment**

- Sn + Sn collisions at 270 MeV/u measured with SπRIT-TPC inside the SAMURAI magnet producing 0.5 T at RIBF RIKEN (2015-2016).
 - ¹³²Sn + ¹²⁴Sn (N/Z = 1.56)
 - ¹⁰⁸Sn + ¹¹²Sn (N/Z = 1.20)
 - ¹²⁴Sn + ¹¹²Sn (N/Z = 1.36)
 - ¹¹²Sn + ¹²⁴Sn (N/Z = 1.36)
- Pions, Hydrogen and Helium isotopes are found.
- Cut
 - Rapidity y₀ = 0 0.4
 - Impact factor b < 1.5 fm

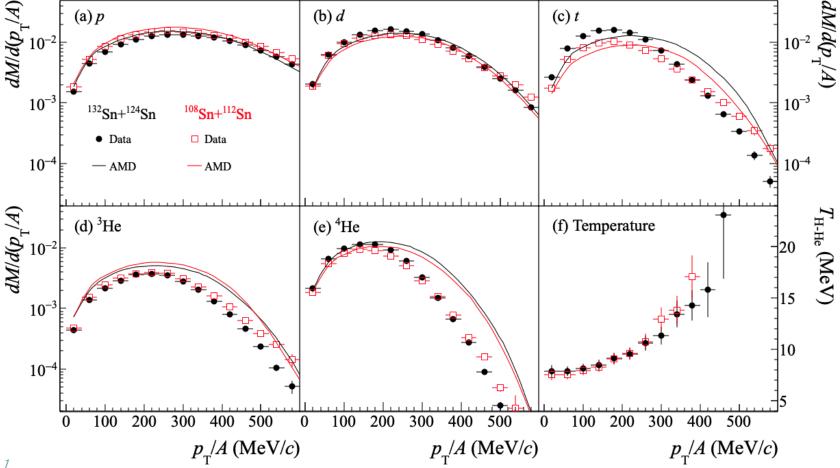


p_T/A Spectra

- Different trend of p_T/A is shown for (N-Z) groups.
- N-Z=1 (p, ³He) particles show more yield in neutron deficient system.
- N-Z=0 (d, ⁴He) particles show little more yield is shown for neutron rich system.
- N-Z=1 (t) particle show larger yield is shown for neutron rich system.
- H-He double ratio temperature was calculated for reference.

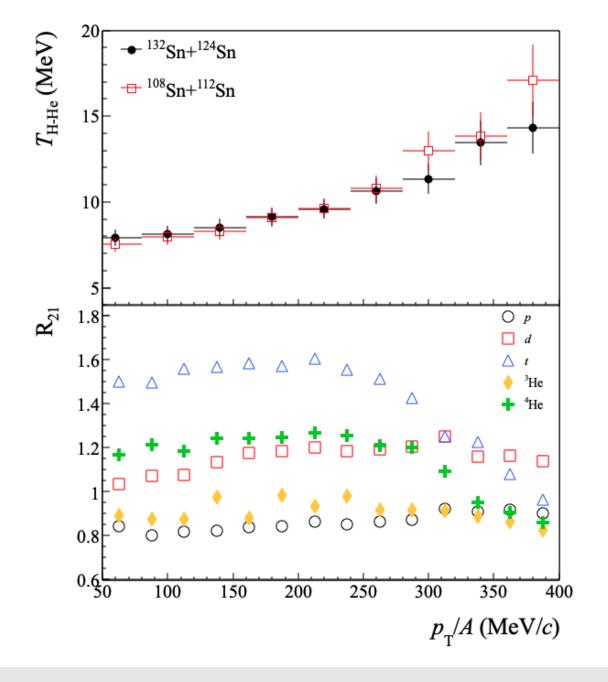
•
$$T = 1.43 \ln^{-1} \left[1.6 \frac{Y(d) Y(^4 He)}{Y(t) Y(^3 He)} \right]$$

p_T/A Spectra + AMD


AMD : Soft symmetry energy

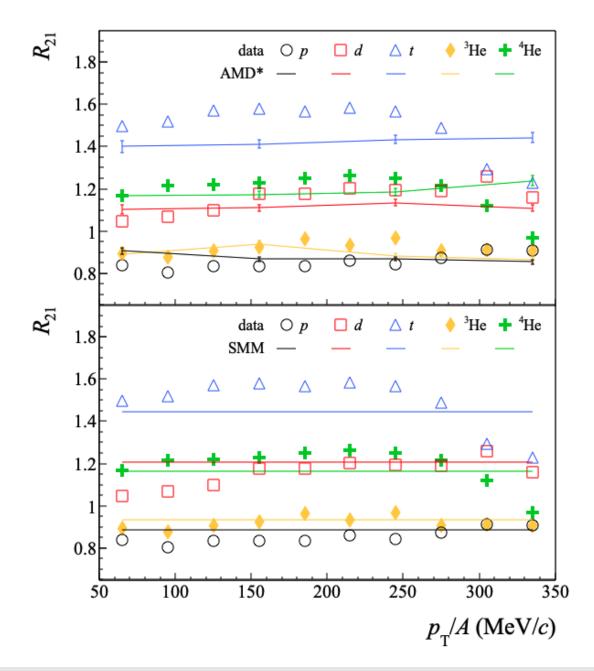
* M. Kaneko et al. Phys. Lett. B 822 (2021) 136681

- Different trend of p_T/A is shown for (N-Z) groups.
- N-Z=1 (p, ³He) particles show more yield in neutron deficient system.
- N-Z=0 (d, ⁴He) particles show little more yield is shown for neutron rich system.
- N-Z=1 (t) particle show larger yield is shown for neutron rich system.
- H-He double ratio temperature was calculated for reference.


•
$$T = 1.43 \ln^{-1} \left[1.6 \frac{Y(d) Y(^4 He)}{Y(t) Y(^3 He)} \right]$$

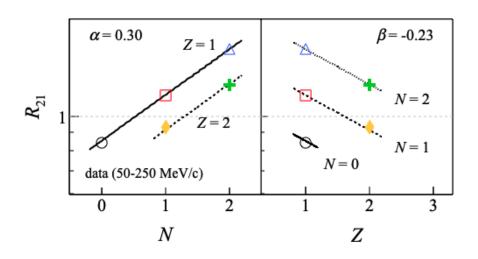
Spectral Yield Ratio

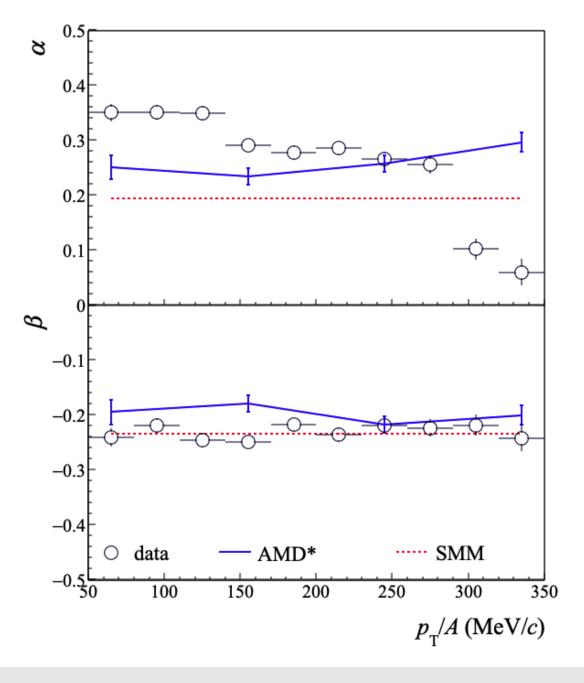
- N-Z group is clearly shown in the spectra.
 - $R_{21} = C \exp(\alpha N + \beta Z)$.
 - $\alpha \simeq -\beta$
- Valid at p_T/A below 250 MeV/c and temperature exceed over 10 MeV at this point.



Spectral Yield Ratio

- N-Z group is clearly shown in the spectra
 - $R_{21} = C \exp(\alpha N + \beta Z)$.
 - $\alpha \simeq -\beta$
- Valid at p_T/A below 250 MeV/c and temperature exceed over 10 MeV at this point.


* S. R. Souza et al. Nucl. Phys. A 989 (2019) 69


- SMM calculation where provided with A and Z of the source:
 - Neutron-rich system : A=172, Z=79
 - Neutron-deficient system : A=142, Z=72
- Compared AMD and SMM calculation explain the data up to 250 MeV/c.
- The overall trend breaks above 250 MeV/c.

Isoscaling with data

- Isoscaling fit to data, AMD and SMM where performed to get the α and β values through p_T/A .
- Nice isoscaling is given below 250 MeV/c.
- Isoscaling above 250 MeV/c is shown to break down.
- α from data decrease even below 250 MeV/c while AMD stays constant. β values stay constant for all cases.

Conclusion

- Isoscaling properties are studied in ¹³²Sn+¹²⁴Sn and ¹⁰⁸Sn+¹¹²Sn systems at 270 MeV/u. compared to the previous studies on isoscaling, we explored collision systems with comparably large energy (270 MeV/u) and large isospin difference (N/Z₂ = 1.56 and N/Z₁ = 1.20).
- Since temperature increase as a function of p_T/A , we performed isoscaling fit for different p_T/A bins.
- The spectral yield ratio R21 show constant trend up to $p_T/A = 250 \text{ MeV}/c$ but triton and ⁴He starts to decrease above this region. Consequently, isoscaling breaks above this boundary ($p_T/A = 250 \text{ MeV}/c$).
- In the reliable p_T/A region (50–250 MeV/c), we obtained $\alpha = 0.30$ and $\beta = -0.23$.
- Thermal equilibrium approximation might not be appropriate for high energy particles in heavy-ion collisions at energy range around 270 MeV/u.
- The temperature of the systems for AMD (H-He temperature) show constant trend through pT/A and temperature for SMM is fixed to 8 MeV. This means that calculations is assuming thermal equilibrium through out the system and this might be the reason for different scaling trend compared to data.
- For the feature studies, more cases are needed be explored in other similar systems, and include other produced particles (neutrons, ⁶He, Li isotopes) if possible.