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Introduction
Quantum ChormoDynamics (QCD) is the best undestood piece of

the Standard Model, from the point of view of the fundamental

degrees of freedom:

• It is SU(3) Yang-Mills theory with six quark flavors in the

fundamental representation, weakly coupled at high energies.

• However, the regime of interest for the matter found in neutron

star (high, but not extremely high densities, low temperatures)

is far from all reasonably simple approaches:

• Far from perturbative regime

• Beyond the well-studied nuclear matter density

• Not suitable for lattice calculations (sign problem)

• Non-perturbative modeling + some degree of extrapolation is

needed.
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Introduction
In this talk I will describe how holographic models can provide a

descriptions of many aspects of the non-perturbative physics and can

be used to study strongly-interacting matter at

• High density

• Zero and finite temperature

• In and out of equilibrium

• Both in the dense quark matter and dense hadronic matter

phases.
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Introduction
In this talk I will describe how holographic models can provide a

descriptions of many aspects of the non-perturbative physics and can

be used to study strongly-interacting matter at

• High density

• Zero and finite temperature

• In and out of equilibrium

• Both in the dense quark matter and dense hadronic matter

phases.

Outline

• Introduction to the holographic correspondence

• Holographic models for QCD

• Overview of applications to neutron star physics
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions.
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions.

• Equivalent means that the two theories contain the same

degrees of freedom, but arranged in differnt ways.

• Depending on the situation, one side or the other may be easier

to handle.
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions.

• N = 4 SYM theory in 4D ⇔ IIB String theory on AdS5 × S5

• large N , large λ: Gravity side becomes classical and

non-stringy.

• Conformal invariance ⇔ AdS spacetime ds2 = r−2(dr2 + dx2µ),
Scaling isometry r → λr, xµ → λxµ.

• RG scale ⇔ radial coordinate r; UV ⇔ AdS boundary r = 0.
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Field/Operator correspondence

• QFT operator O(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is a source for O(x) in the QFT:
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Field/Operator correspondence

• QFT operator O(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is a source for O(x) in the QFT:

Dimension ∆ of O determined

by the mass of Φ:

m2 = ∆(∆− d).
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Field/Operator correspondence

• QFT operator O(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is a source for O(x) in the QFT:

Dimension ∆ of O determined

by the mass of Φ:

m2 = ∆(∆− d).

in the large-N limit:

ZQFT [Φ0(x)] = exp iScl[Φ0(x)]

Scl[Φ0]: classical bulk action evaluated on the solution of the

field equations with fixed boundary condition Φ0(x).
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Field/Operator correspondence

• QFT operator O(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is a source for O(x) in the QFT:

Dimension ∆ of O determined

by the mass of Φ:

m2 = ∆(∆− d).

in the large-N limit:

ZQFT [Φ0(x)] = exp iScl[Φ0(x)]

Scl[Φ0]: classical bulk action evaluated on the solution of the

field equations with fixed boundary condition Φ0(x).

⟨O(x1) . . . O(xn)⟩ =
δ

δΦ0(x1)
. . .

δ

δΦ0(xn)
Scl[Φ0]
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Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum

(conformal invariance, susy, lots of extra operators). To describe

QCD one needs to build other gravity solutions.
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Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum

(conformal invariance, susy, lots of extra operators). To describe

QCD one needs to build other gravity solutions.

Two complementary approaches:

Top-down Construct string theory backgrounds which break

susy/conformal invarariance.

Bottom-up: Construct phenomenological gravity models such that,

using holography rules, we can match the properties of the QFT.
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Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum

(conformal invariance, susy, lots of extra operators). To describe

QCD one needs to build other gravity solutions.

Two complementary approaches:

Top-down Construct string theory backgrounds which break

susy/conformal invarariance.

• allows to control both sides of the correspondence;

• typically the gauge theory is only a relative of QCD;

Bottom-up: Construct phenomenological gravity models such that,

using holography rules, we can match the properties of the QFT.
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Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum

(conformal invariance, susy, lots of extra operators). To describe

QCD one needs to build other gravity solutions.

Two complementary approaches:

Top-down Construct string theory backgrounds which break

susy/conformal invarariance.

• allows to control both sides of the correspondence;

• typically the gauge theory is only a relative of QCD;

Bottom-up: Construct phenomenological gravity models such that,

using holography rules, we can match the properties of the QFT.

• Not a controlled approximation of a more fundamental theory;

• Free parameters can be used to fit data from other techniques

and have a quantitative match.
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Minimal holographic YM

• The bulk theory is five-dimensional (xµ + RG coordinate r)

• Include only lowest dimension YM operators (∆ = 4)

4D Operator Bulk field Coupling

TrF 2 ⇔ Φ N
∫

e−Φ TrF 2

Tµν ⇔ gµν
∫

gµνTµν

λ = Ng2YM = eΦ (finite in the large N limit).
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Minimal holographic YM

• The bulk theory is five-dimensional (xµ + RG coordinate r)

• Include only lowest dimension YM operators (∆ = 4)

4D Operator Bulk field Coupling

TrF 2 ⇔ Φ N
∫

e−Φ TrF 2

Tµν ⇔ gµν
∫

gµνTµν

λ = Ng2YM = eΦ (finite in the large N limit).

• Breaking of conformal symmetry, mass gap, confinement, and

all non-perturbative dynamics driven by the dilaton dynamics

(aka the Yang-Mills coupling).

• (Eventually: add axion field a ⇒ TrF F̃ )
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5-D Eistein-Dilaton Theory

Gursoy, Kiritsis, Mazzanti, Nitti, 2007-2012

Bulk dynamics described by a 2-derivative action:

SE = −M3
pN

2
c

∫

d5x
√
−g

[

R− 4

3
(∂Φ)2 − V (Φ)

]
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5-D Eistein-Dilaton Theory

Gursoy, Kiritsis, Mazzanti, Nitti, 2007-2012

Bulk dynamics described by a 2-derivative action:

SE = −M3
pN

2
c

∫

d5x
√
−g

[

R− 4

3
(∂Φ)2 − V (Φ)

]

• V (Φ) fixed phenomenologically. It should parametrize our

ignorance of the “true” five-dimensional string theory

• Effective Planck scale ∼ N2
c is large.

The Holographic Approach to Dense QCD Matter – p.11



5-D Eistein-Dilaton Theory

Gursoy, Kiritsis, Mazzanti, Nitti, 2007-2012

Bulk dynamics described by a 2-derivative action:

SE = −M3
pN

2
c

∫

d5x
√
−g

[

R− 4

3
(∂Φ)2 − V (Φ)

]

• V (Φ) fixed phenomenologically. It should parametrize our

ignorance of the “true” five-dimensional string theory

• Effective Planck scale ∼ N2
c is large.

• Features: asymptotic freedom, confinement, discrete linear

glueball spectrum, correct thermodynamics and phase diagram
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Five dimensional setup

The Poincaré-invariant vacuum solution has the general form:

ds2 = e2A(r)(dr2 + dxµdx
µ), λ = λ(r), 0 < r < +∞
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Five dimensional setup

The Poincaré-invariant vacuum solution has the general form:

ds2 = e2A(r)(dr2 + dxµdx
µ), λ = λ(r), 0 < r < +∞

• eA(r) ∝ 4D energy scale

• λ(r) ∝ running ’t Hooft coupling

• A(r),λ(r) determined by solving bulk Einstein’s equations.
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Five dimensional setup

The Poincaré-invariant vacuum solution has the general form:

ds2 = e2A(r)(dr2 + dxµdx
µ), λ = λ(r), 0 < r < +∞

• eA(r) ∝ 4D energy scale

• λ(r) ∝ running ’t Hooft coupling
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Finite Temperature

Equilibrium thermo dynamics at T = 1/β ⇒ euclidean periodic

time τ ∼ τ + β.
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Finite Temperature

Equilibrium thermo dynamics at T = 1/β ⇒ euclidean periodic

time τ ∼ τ + β.

The partition function is given by the gravity action evaluated at its

extremum (solution of the of the gravity-side field equation)

Z(β) = e−Sgrav [g0,Φ0]

• Different equilibrium states ⇔ Different gravity solutions
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Finite Temperature

Equilibrium thermo dynamics at T = 1/β ⇒ euclidean periodic

time τ ∼ τ + β.

The partition function is given by the gravity action evaluated at its

extremum (solution of the of the gravity-side field equation)

Z(β) = e−Sgrav [g0,Φ0]

• Different equilibrium states ⇔ Different gravity solutions

• Thermal partition function ≃ sum over stationary points:

Z(β) ≃ e−βF1 + e−βF2 βFi(T ) = Sgrav

∣

∣

∣

soli
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Finite Temperature

Equilibrium thermo dynamics at T = 1/β ⇒ euclidean periodic

time τ ∼ τ + β.

The partition function is given by the gravity action evaluated at its

extremum (solution of the of the gravity-side field equation)

Z(β) = e−Sgrav [g0,Φ0]

• Different equilibrium states ⇔ Different gravity solutions

• Thermal partition function ≃ sum over stationary points:

Z(β) ≃ e−βF1 + e−βF2 βFi(T ) = Sgrav

∣

∣

∣

soli

• Phase transition happens at Tc where F1(Tc) = F2(Tc)
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Finite Temperature

Two different kinds of solutions:
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Finite Temperature

Two different kinds of solutions:

Thermally excited vacuum:

ds2TG = e2A(r)
[

dr2 + dτ2 + dx⃗2
]
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Finite Temperature

Two different kinds of solutions:

Thermally excited vacuum:

ds2TG = e2A(r)
[

dr2 + dτ2 + dx⃗2
]

Black hole:

ds2BH = e2A(r)

[

dr2

f(r)
+ f(r)dτ2 + dx⃗2

]

, f(rh) = 0, |ḟ(rh)| = 4πT
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Finite Temperature

Two different kinds of solutions:

Thermally excited vacuum:

ds2TG = e2A(r)
[

dr2 + dτ2 + dx⃗2
]

Black hole:

ds2BH = e2A(r)

[

dr2

f(r)
+ f(r)dτ2 + dx⃗2

]

, f(rh) = 0, |ḟ(rh)| = 4πT

• the black hole always corresponds to a deconfined phase

The Holographic Approach to Dense QCD Matter – p.15



Phase diagram

First order transition to a black hole phase for T > Tc, dual to decon-

finement phase transition

The Holographic Approach to Dense QCD Matter – p.16



Phase diagram

First order transition to a black hole phase for T > Tc, dual to decon-

finement phase transition
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Matching Pure YM Thermodynamics

Appropriate dilaton potential (fixed asymptotics plus 2 fit

parameters) ⇒ Good agreement with lattice YM thermodynamics.
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Matching Pure YM Thermodynamics

Appropriate dilaton potential (fixed asymptotics plus 2 fit

parameters) ⇒ Good agreement with lattice YM thermodynamics.

s(T )/T 3
lattice data: Panero, hep-lat/0106019
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Matching Pure YM Thermodynamics

Appropriate dilaton potential (fixed asymptotics plus 2 fit

parameters) ⇒ Good agreement with lattice YM thermodynamics.

(ϵ− 3p)/T 4
lattice data: Panero, hep-lat/0106019
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Adding Flavor: V-QCD

Casero, Gursoy, Iatrakis, Jarvinen, Kiritsis, Mazzanti, Nitti, Paredes, 2007-...

Nf quark flavors: more bulk fields.

• Bi-fundamental scalars Scalars

T i
j ⇔ q̄iqj

• U(Nf )L × U(Nf )R gauge fields

Aa;L
B , Aa;R

B ⇔ Ja;L,R
µ ≡ q̄iγµ (τ

a)ji (1±γ5)qj a = 1 . . . N2
f , i, j = 1 . . . Nf
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Adding Flavor: V-QCD

Casero, Gursoy, Iatrakis, Jarvinen, Kiritsis, Mazzanti, Nitti, Paredes, 2007-...

Nf quark flavors: more bulk fields.

• Bi-fundamental scalars Scalars

T i
j ⇔ q̄iqj

• U(Nf )L × U(Nf )R gauge fields

Aa;L
B , Aa;R

B ⇔ Ja;L,R
µ ≡ q̄iγµ (τ

a)ji (1±γ5)qj a = 1 . . . N2
f , i, j = 1 . . . Nf

Sflavor =

∫

d5xV0(λ)e
−T 2

√

− det(gAB + κ(λ)∂AT∂BT + w(λ)FAB)

• χSB : T → ∞ in the IR.
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Finite temperature and density

• To describe a finite baryon density state: turn on a mon-trivial

U(1) gauge field in the bulk:

A0 = a(r)δij , T i
j = τ(r)δij

• Near the boundary:

a(r) ∼ µ+ ρr3 + . . . , τ(r) ∼ mr + σr3 + . . . r → 0

• Deconfined state at finite temperature and chemical potential:

charged black hole solution.

• Equation of state of the black hole provides the equation of

state of a uniform distribution of deconfined matter at finite

temperature and chemical potential
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Finite temperature and density

• To describe a finite baryon density state: turn on a mon-trivial

U(1) gauge field in the bulk:

A0 = a(r)δij , T i
j = τ(r)δij

• Near the boundary:

a(r) ∼ µ+ ρr3 + . . . , τ(r) ∼ mr + σr3 + . . . r → 0

• Deconfined state at finite temperature and chemical potential:

charged black hole solution.

• Equation of state of the black hole provides the equation of

state of a uniform distribution of deconfined matter at finite

temperature and chemical potential
The Holographic Approach to Dense QCD Matter – p.19
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Phase diagrams

Finite Temperature

Finite Temperature

and Density
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Out-of-equilibrium physics

• Charged black hole solutions describe a homogeneous and

static state.

• In the long-wavelength limit the dynamics is described by the

transport of conserved charges the stress tensor and the flavor

currents

Tµ, J
L,R
µ

• Holography computes real-time response functions associated

to these currents, e.g.

⟨Ja
µJ

b
ν⟩, ⟨TijTkl⟩ (∼ η)

• More general, far from equilibrium hydrodynamics can be

studied numerically (e.g. similar studies exist for QGP)
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Holography applied to neutron stars

• N = 4 models

• V-QCD

• Dense hadronic matter

• Future developements

(partial) list of contributors: P. Chesler, C. Ecker, C. Hoyos, T.

Ishii, M. Jarvinen, N. Jokela, A. Loeb, G. Nijs, J. Remes, D.

Rodríguez Fernández, W. van der Schee, A. Vourinen...
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Top-down Flavored N = 4 models

• Model the high-density phase with N = 4 SUSY Yang-Mills +

N = 2 SUSY flavor d.o.f.

• Holographic dual: 10-dimensional AdS5 × S5 black hole with

“flavor D3-D7 branes” : can compute EoS exactly:

ϵ = 3p+ α
√
p

• Fix parameter α by matching with low-density EoS from

nuclear theory and with perturbative limit at high density.

• Use standard TOV equations to obtain Mass-Radius curves.
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Top-down Flavored N = 4 models

Results:

• Strong first order transition between nuclear matter and quark

matter

• Quark matter stars unstable; Mass-radius curve effectively ends

at phase transition.

Hoyos, Jokela, D. Rodríguez Fernández, A. Vourinen, 1603.02943
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V-QCD

Similar analysis on phenomenological 5d models of V-QCD:

explore parameter that the EoS

• has consistent thermodynamics (continous p and µ);

• speed of sound < 1

• matches pQCD at high µ and Chiral Effective Theory at low µ

• Use these constraints to model low-µ phase with a polytropic

fluid and high-µ phase with V-QCD (using fits to lattice results

at zero density and finite temperature to fix some of the

parameters).
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V-QCD

Jokela, Jarvinen, Remes, 1809.07770

• Space of acceptable EoS (requiring at most one phase

transition)
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V-QCD

Jokela, Jarvinen, Remes, 1809.07770

• Space of acceptable EoS (requiring at most one phase

transition) and compatible with astrophysical observations

(Maximal mass + tidal deformability from GW170817).
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Baryons

More challenging: model the hadronic phase also using holography.

Advantage: construct EoS based on a single model.
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Baryons

More challenging: model the hadronic phase also using holography.

Advantage: construct EoS based on a single model.

• Baryons in holography are solitonic solutions of the

non-abelian gauge fields dual to the flavor currents.

• Soliton localized in holographic direction r and in space x⃗

• Homogeneous ansatz:

Ai = a(r)σi

equivalent to “smearing” the baryon uniformly over space Ishii,

Jarvinen, Nijs, 1903.06169
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Baryons

More challenging: model the hadronic phase also using holography.

Advantage: construct EoS based on a single model.

• Baryons in holography are solitonic solutions of the

non-abelian gauge fields dual to the flavor currents.

• Soliton localized in holographic direction r and in space x⃗

• Homogeneous ansatz:

Ai = a(r)σi

equivalent to “smearing” the baryon uniformly over space Ishii,

Jarvinen, Nijs, 1903.06169

• Stiff equation of state (c2s > 1/3)

• First beginning-to-end holographic neutron-star collisions with

gravitational wave emission Ecker, Jarvinen, Nijs, van der Schee 1908.03213
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Uniefied Weak/Strong approach

Improved weak/strong coupling matching: use hybrid low-density

model to match V-QCD in the dense baryonic phase

Jokela, Jarvinen, Nijs, Remes 2006.01141.

• No polytropes at low densities, use collection of

theory-motivated EoS instead.
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Uniefied Weak/Strong approach

Improved weak/strong coupling matching: use hybrid low-density

model to match V-QCD in the dense baryonic phase

Jokela, Jarvinen, Nijs, Remes 2006.01141.

• No polytropes at low densities, use collection of

theory-motivated EoS instead.

• Improved constraints on EoS
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Uniefied Weak/Strong approach

Improved weak/strong coupling matching: use hybrid low-density

model to match V-QCD in the dense baryonic phase

Jokela, Jarvinen, Nijs, Remes 2006.01141.

• No polytropes at low densities, use collection of

theory-motivated EoS instead;

• Radius vs. tidal deformability:
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Uniefied Weak/Strong approach

Improved weak/strong coupling matching: use hybrid low-density

model to match V-QCD in the dense baryonic phase

Jokela, Jarvinen, Nijs, Remes 2006.01141.

• No polytropes at low densities, use collection of

theory-motivated EoS instead;

• Constraints on peak frequencies of post-merger GWs (inferred

from static properties + numerical simulations)
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The Future

• Finite temperature equations of state have been constructed

using the same methods (V-QCD + matching low-density

nuclear theory). Relevant for post-merger transient states. Chesler,

Jokela, Loeb, Vuorinen 1906.08440
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The Future

• Finite temperature equations of state have been constructed

using the same methods (V-QCD + matching low-density

nuclear theory). Relevant for post-merger transient states. Chesler,

Jokela, Loeb, Vuorinen 1906.08440

• Baryons. Construct more precise description of hardronic

matter: study properties of single baryon then construct a

holographic fluid of baryons given a bulk equation of state.
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The Future

• Finite temperature equations of state have been constructed

using the same methods (V-QCD + matching low-density

nuclear theory). Relevant for post-merger transient states. Chesler,

Jokela, Loeb, Vuorinen 1906.08440

• Baryons. Construct more precise description of hardronic

matter: study properties of single baryon then construct a

holographic fluid of baryons given a bulk equation of state.

• Use holographic correlation functions to compute quantities

related to weak interactions.
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Electroweak interactions: neutrino opacities

Oertel, Pascal, Mancini, Novak 2003.02152

• In-medium neutrino-nucleon and neutrino-neutrino interactions

important for post-merger phase (cooling, ejecta composition,

shockwave dynamics). E.g.

p+ e− ↔ n+ νe, p ↔ n+ e+ + νe

• To compute the in-medium neutrino diffusion: need

strong-interaction contribution to EW gauge bosons

polarization functions:

• At finite density and temperature

• In real time
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Electroweak interactions: neutrino opacities

Oertel, Pascal, Mancini, Novak 2003.02152

• In-medium neutrino-nucleon and neutrino-neutrino interactions

important for post-merger phase (cooling, ejecta composition,

shockwave dynamics). E.g.

p+ e− ↔ n+ νe, p ↔ n+ e+ + νe

• To compute the in-medium neutrino diffusion: need

strong-interaction contribution to EW gauge bosons

polarization functions:

• At finite density and temperature

• In real time

This are exactly the things that Holography can compute !
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Self-energies

Schematically:

Z =

∫

DEW

∫

DQCDe
iSEW [ν,W,Z...]eiSQCD+eiSint Sint =

∫

d4xWµJ
µ

Jµ: Baryonic or quark EW current operator.
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Self-energies

Schematically:

Z =

∫

DEW

∫

DQCDe
iSEW [ν,W,Z...]eiSQCD+eiSint Sint =

∫

d4xWµJ
µ

Jµ: Baryonic or quark EW current operator.

Z =

∫

DEW eiSEW [ν,W,Z...]

∫

DQCDe
iSQCD [1+i

∫
WµJµ− 1

2

∫ ∫
WµWνJµJν+...]
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Self-energies

Schematically:

Z =

∫

DEW

∫

DQCDe
iSEW [ν,W,Z...]eiSQCD+eiSint Sint =

∫

d4xWµJ
µ

Jµ: Baryonic or quark EW current operator.

Z =

∫

DEW eiSEW [ν,W,Z...]

∫

DQCDe
iSQCD [1+i

∫
WµJµ− 1

2

∫ ∫
WµWνJµJν+...]

If one could do the QCD integral:

Z =

∫

DEW eiSEW [ν,W,Z...][1− 1

2

∫
WµWν⟨JµJν⟩medium+...]≈

∫

DEW eiS
eff [ν,W,Z...]

Seff = SEW +
1

2

∫

WµWν⟨JµJν⟩QCD medium
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Self energies from holography

Seff = SEW +
1

2

∫

WµWν⟨JµJν⟩QCD medium

Self-energy:

Σµν(p) = Σµν
EW (p) + ⟨Jµ(p)Jν(−p)⟩QCD medium
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Self energies from holography

Seff = SEW +
1

2

∫

WµWν⟨JµJν⟩QCD medium

Self-energy:

Σµν(p) = Σµν
EW (p) + ⟨Jµ(p)Jν(−p)⟩QCD medium

From holography:

• Take the gravity dual geometry at finite density and temperature

(and eventually out of equilibrium)

• Perturbe it with appropriate combination of bulk gauge fieds

Aµ(r, p) which is dual to current operator Jµ(p)

• Compute correlator:

⟨Jµ(p)Jν(−p)⟩ = δ2

δAµ(0, p)δAν(0,−p)
Sbulk[Aµ]
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Conclusion

Holographic models are a valid complement to nuclear matter

theory, perturbative QCD and effective field theory methods to

describe neutron star phyics

• State-of-the-art models provide reasonable equations of state,

compatible with observations, and have been used in BNS

merger simulations all the way through.

• They can potentally descibe both dense quark matter and dense

nuclear matter within the same model.

• They come out-of-the-box ready for computing finite

temperature and transport properties

• Input needed from other communities to concentrate effort to

do computations where it is most interesting and where other

approaches are not reliable.

The Holographic Approach to Dense QCD Matter – p.36


	Introduction
	Introduction
	AdS/CFT
	AdS/CFT
	AdS/CFT
	Field/Operator correspondence
	Field/Operator correspondence
	Phenomenological holography
	Minimal holographic YM
	5-D Eistein-Dilaton Theory
	Five dimensional setup
	Five dimensional setup
	Finite Temperature
	Finite Temperature
	Phase diagram
	Matching Pure YM Thermodynamics
	Adding Flavor: V-QCD
	Finite temperature and density
	Phase diagrams
	Out-of-equilibrium physics
	Holography applied to neutron stars
	Top-down Flavored $N=4$ models
	Top-down Flavored $N=4$ models
	V-QCD
	V-QCD
	V-QCD
	Baryons
	Uniefied Weak/Strong approach
	Uniefied Weak/Strong approach
	Uniefied Weak/Strong approach
	The Future
	Electroweak interactions: neutrino opacities
	Self-energies
	Self energies from holography
	Conclusion

