
Scalable Processing for Storage Events

Leveraging dCache events for handling scientific data

Michael Schuh, P.Fuhrmann, T.Hartmann, P.Millar, T.Mkrtchyan, M.Sahakyan
Jan 27 2020

Page 2

Software stack event driven computing

Function as a service
Distributed computing

Science Notebooks

Peta-scale distributed storage
Storage events

Kafka Stream API

Cloud Computing
Container Orchestration

Software Defined Networking
Infrastructure as code

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 3

Scalable Event-Driven Service Architecture

Source Service

Direct messaging

Source ServiceChannel
pub sub

Publish/Subscribe messaging, complex processing

Service Channel
sub

Based on: https://knative.dev/docs/eventing/

Producers Sensors, detectors, storage systems, user
Channels Message-oriented middleware, Kafka Topics, direct peer to peer
Consumers Cloud Functions (processing or filter+transform+forward)

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 4

Primary Example: Storage Events

 FaaS for data-driven workflows
 Push data
 Subscribe to events
 Run codes automated

 Leverage the storage provider log
 Analyse and tune dCache, a petascale mass storage system
 Real-time analysis, large scale time series (Apache Spark)
 Export to Elastic Search & Kibana
 Trigger functions (uncompress, malware scan, ...)

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 5

 Event-driven code execution
 Auto-scaling
 All programming languages

Function-as-a-Service

source: http://fnproject.io/tutorials

 Basic: Invoke function by FaaS API or client, receive output & logs
Create function from file
Create function from container

 Advanced: Expose URL for function, leverage HTTP features
 Expert: Build complex RESTful APIs from functions

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 6

Scaling on Demand, Avoidance of Idling

 scale-to-zero, accept cold start penalty O(0.1s)
 scale-to-one, reserve memory, keep low latency functions pre-warm
 re-use stateless containers

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0

Page 7

Auto-scaling, event-triggered micro services

Control of Docker environment required
Orchestrate source-to-container builds
Managing traffic for service mesh-grid

Control of Docker environment optional
Add function codes to language runtimes
System manages scaling resources

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Source: https://blogs.cisco.com/cloud/examining-the-faas-on-k8s-market & fonk-apps.io

https://blogs.cisco.com/cloud/examining-the-faas-on-k8s-market

Page 8

Openwhisk architecture
Redis HA on k8s

CouchDB HA on k8s

Internal messaging
Kafka/Zookeeper

Invokers start/stop
Docker Containers

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Source: Figure 6.2 in Oreilly’s Docker-for-serverless applications

Page 9

 GitLab as frontend
 Push code, go live

 Functions
 Dockerfiles

 Version control
 Auto-scaling CI/CD
 Container registry
 Secret management

 per user, group, project
 per CI/CD job

Continuous Integration, Delivery & Deployment (CI/CD)

source: https://about.gitlab.com/

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 10

 GitLab as frontend
 Push code, go live

 Functions
 Dockerfiles

 Version control
 Auto-scaling CI/CD
 Container registry
 Secret management

 per user, group, project
 per CI/CD job

source: https://about.gitlab.com/

Same CI/CD as for platform services

Note:
Same system provides the platform as-a-service

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 11

Docker Machine Openstack Driver

 Openstack driver used in:
 Gitlab docker+machine runners
 Rancher

 github.com/docker/machine/issues/4537 Source: https://docs.docker.com/machine/drivers/

Docker Machine is now in maintenance mode

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 12

Heavy Lifting: Event-driven access to HTC cluster

 Automated HTC services on data upload
 Transfer between sites
 Restaging from tape
 Ingest from detector, instrument

 HTC available in FaaS
 Offloading of compute/IO-intensive jobs
 FaaS as “glue code”

 FaaS available in HTC
 Consolidate common tasks as services
 Function based accounting
 Usage statistics for users and codes

Source: T.Hartmann (DESY)

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 13

Token-based Authentication and Authorization

 Secure multi-tenancy
 Access delegation
 Private/public events, data, functions
 Tokens for

 dCache to read/write data
(Macaroons, SciTokens, OIDC)

 HTCondor access
(SciTokens)

 FaaS namespace access
(OIDC, custom…)

 GitLab repositories, container registries
(OIDC, custom)

 ...
 In discussion (WLCGAuthorizationWG): WLCG-JWT

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Page 14

As-a-Service Different from as-Infrastructure

 Shift from user based brokering to matching the current demand by a service
 Shift to supporting federated identity and new authorization standards
 Auto-scaling FaaS and batch systems
 Scaling out to transient resources (multi-cloud, EOSC, ...)
 Scale containers, also down to zero (or one to reduce latency)
 Re-use accessible, interoperable microservices rather than re-produce
 Consistent version control and CI/CD for user container builds and runs

| Scalable Processing for Storage Events | Michael Schuh, Jan 27 2020

Thank you

Contact

Deutsches

Elektronen-Synchrotron

www.desy.de

Michael Schuh

Scientific Computing

michael.schuh@desy.de

+49 040 8998 2316

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

