
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules

Handling LSST data:
experimenting an event-driven approach

Bastien Gounon
January 27, 2020

 2

Context : image simulation on the grid

● ImSim: a software package simulating LSST images
● Takes astronomical catalogs as input
● Outputs LSST-like FITS images

● Year 4 and 5 of the survey running in the European grid via DIRAC
● UK & French sites participate in the simulation effort (~13 sites)

 3

Making ImSim data available for processing

● Job outputs uploaded to CC-IN2P3 LSST dCache grid SE (~20TB available)
● Total estimated output data is ~100TB
● ImSim data then ingested through the LSST processing pipeline
● Processing jobs run at CC-IN2P3, so we need to:

● Transfer all that data from dCache to our main distributed filesystem
● Empty the dCache pool on a regular basis to make room for incoming

ImSim data

 4

Taking advantage of dCache events

● Legacy approach: manually execute bulk copy (using Globus for example)
● Requires human intervention
● Difficult to estimate copy duration

● Event-driven approach: take advantage of storage events for automation
● No human intervention
● Copies happen in real-time, as new files are uploaded to dCache

● Good opportunity to gain experience with dCache events and event-
driven processing in general

● Using the existing Kafka cluster from our ESCAPE testbed

 5

dCalqr

● Written in Go
● Source on IN2P3 GitLab: https://gitlab.in2p3.fr/bastien.gounon/dcalqr
● Available as a binary executable or a Docker container
● Goal: copy incoming dCache data to the main LSST storage for processing
● Designed for one specific use case
● Still in active development
● Portable and standalone executable, very easy to deploy and maintain
● Watch any local or remote dCache instance, from a server or laptop

https://gitlab.in2p3.fr/bastien.gounon/dcalqr
https://gitlab.in2p3.fr/bastien.gounon/dcalqr

 6

What

● Consume messages from a Kafka topic
● Filter messages and identify uploads to a given directory
● Execute HTTP GET request from dCache (using x509_proxy

authentication) and copy the file to a local directory

/sps/lsst

1. upload
2. produce
event

3. consume
event

5. copy file

4. retrieve file

 7

What
{
 "date":"2019-07-09T11:11:57.024+02:00",
 "owner":"/O=GRID-FR/C=FR/O=CNRS/OU=CC-IN2P3/CN=Adrien Georget",
 "msgType":"request",
 "clientChain":"134.158.240.106",
 "mappedGID":239,
 "cellName":"WebDAV-ccdcalitest12",
 "session":"door:WebDAV-ccdcalitest12@webdav-ccdcalitest12Domain:AAWNO/PLJUg:1562663516332000",
 "subject":[
 "UserNamePrincipal[ageorget]",
 "UidPrincipal[3915]",
 "LoAPrincipal[IGTF-AP:Classic]",
 "EntityDefinitionPrincipal[Person]",
 "FQANPrincipal[/dteam/NGI_FRANCE/sites/IN2P3-CC]",
 "GidPrincipal[239,primary]",
 "/O=GRID-FR/C=FR/O=CNRS/OU=CC-IN2P3/CN=Adrien Georget",
 "GroupNamePrincipal[lcgdteam,primary]",
 "Origin[134.158.240.106]",
 "FQANPrincipal[/dteam/NGI_FRANCE]",
 "FQANPrincipal[/dteam/NGI_FRANCE/sites]",
 "EmailAddressPrincipal[adrien.georget@cc.in2p3.fr]",
 "FQANPrincipal[/dteam,primary]"
],
 "transferPath":"/pnfs/in2p3.fr/data/doma/testWebdav",
 "sessionDuration":692,
 "storageInfo":"disk:doma@osm",
 "cellType":"door",
 "fileSize":119936222,
 "mappedUID":3915,
 "VERSION":"1.0",
 "queuingTime":0,
 "cellDomain":"webdav-ccdcalitest12Domain",
 "client":"134.158.240.106",
 "pnfsid":"00004F0AF7BEAE5A4CBEBF0FBF036D01F4C4",
 "billingPath":"/pnfs/in2p3.fr/data/doma/testWebdav",
 "status":{
 "msg":"",
 "code":0
 }
}

 8

How

● Runs as a daemon on any machine
● Shopify/sarama Go client library for Kafka interaction
● Toml file for configuration
● Mostly built-in Go libraries for the rest
● Additional features :

● Retry and report failed transfers
● Adler32 checksum validation
● Configurable maximum number of parallel transfers
● Metrics logging (file size/throughput)
● Keep track of the topic offset

 9

How

config file

 10

How

logs

 11

Scalability

● Easy horizontal scaling thanks to Kafka consumer groups
● Kafka partitions are dynamically assigned to members of the group
● Increase throughput by running one instance per data transfer node
● Currently our dCache topic has a single partition, but we would like to

move to multiple partitions

● Impact on dCache ?

 12

Evolution

● Logging to ElasticSearch for advanced monitoring
● Automatic file deletion
● Templatize code to fit new workloads behind Kafka (write your own filter

+ the task to run for each message matched)

 13

Issues encountered

● Hard-coded pause between message reception and HTTP GET to avoid
returning a 404 error

● Requests periodically hang for a few minutes, before successfully
completing all at once. Reason not identified yet, may be related to
dCache load ?

● Request queue seems to fill up even though the client is limited to 10
simultaneous connections: more debug needed client side

 14

Impressions

● >400K files and >50TB of data copied over 7 weeks, left unattended for
most of the time

● Low failure rate since retry implementation (< 1%)
● No major issue with dCache nor Kafka

 15

Conclusion and questions

● Need to explore FaaS platforms such as Apache Openwhisk
▻ Pros: flexibility, run any code, centralized
▻ Cons: initial configuration, maintaining the service

● Looking for more use cases to reuse our experience with dCache storage
events for other usecases around Kafka

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

